
 Advanced search

Linux Journal Issue #31/November 1996

Features

Linux Goes 3D: An Introduction to Mesa/Open GL by Jörg-Rüdiger Hill
Discover Mesa, a 3D graphics library that is source code-
compatible with OpenGL.

Qt GUI Toolkit by Eirik Eng
Porting graphics to multiple platforms using a GUI toolkit.

Graphics Tools for Linux by Michael J Hammel
Can you really do professional graphic art on a Linux system? If
you're aware of all the available tools, you can.

OpenGL Programming on Linux by Vincent S Cojot
How one student used Linux and OpenGL to build a 3D, network-
capable tank game.

News and Articles

The Java Developer's Kit
by Arman Danesh

LJ Interviews Larry Gritz
by Amy Wood

The Linux-GGI Project
by Steffen Seeger and Andreas Beck

Java and Postgres95
by Bill Binko

Columns

Letters to the Editor

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/031/0174.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0201.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0162.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5534.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0166.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0221.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0221.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0160.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0220.html

From the Publisher
Novice-to-Novice Keyboards, Consoles, and VT Cruising
Product Review Debian 1.1
Linux Means Business MkLinux: Linux Comes to the Power
Macintosh
Book Review Inside Linux
Take Command etags
New Products
Best of Technical Support

Directories & References

Consultants Directory

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/031/0214.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0187.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0172.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0141.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0141.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0123.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0153.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0199.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0219.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/consult.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Goes 3D: An Introduction to Mesa/OpenGL

Jörg-Rüdiger Hill

Issue #31, November 1996

3D graphics aren't hard when you have an expert to tell you how it's done.

Recently, I installed Linux for the first time on my home computer. After the
excitement of having a Unix workstation at home had faded away, I started
looking for a way to port my molecular graphics program Viewmol to Linux. I
used to work with IBM and Silicon Graphics workstations, and Viewmol had
been written using the Silicon Graphics' Graphics Library (Iris GL). There are a
lot of 3D graphics libraries available for Linux (over 180 are listed on the
Technische Universitat Berlin web site, www.cs.tu-berlin.de/~ki/engines.html)
including some rudimentary implementations of Iris GL (YGL at WWW.thp.Uni-
Duisburg.DE/Ygl/ReadMe.html, 2D only, and VOGL at http://
www.cs.kuleuven.ac.be/~philippe/vogl/), but none of the libraries had the full
functionality that I needed—then I discovered Mesa. Mesa is a 3D graphics
library which is source code compatible with OpenGL, Silicon Graphics'
successor to Iris GL. Mesa's goal is to make programs which have been written
for OpenGL runnable on every X windows system including Linux. So I took a
better look at Mesa and decided to rewrite my program for OpenGL.

Mesa has been written mainly by Brian Paul over the last 3 years and is
currently (as of this writing) at version 1.2.8. Nearly all of the OpenGL
functionality is available; the only missing features are anti-aliasing, mip-
mapping, polygon stippling and some of the texture querying functions. Mesa's
home page, www.ssec.wisc.edu/~brianp/Mesa.html, lists a number of
applications (basically scientific visualization tools, but also a VRML browser)
which use it. Currently, Mesa can be called from C and Fortran routines.

While OpenGL has been designed as a software interface to high-performance
(and high-price) graphics hardware, Mesa is a software-only solution which
uses X windows to interface with the hardware. (Recently a SVGA driver and
some support for 3D PC-hardware have been added to Mesa.) Therefore Mesa
based programs usually execute slower than OpenGL based programs. Both

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.cs.tu-berlin.de/~ki/engines.html
http://WWW.thp.Uni-Duisburg.DE/Ygl/ReadMe.html
http://WWW.thp.Uni-Duisburg.DE/Ygl/ReadMe.html
http://www.cs.kuleuven.ac.be/~philippe/vogl
http://www.cs.kuleuven.ac.be/~philippe/vogl
http://www.ssec.wisc.edu/~brianp/Mesa.html

libraries are hardware independent and window system independent; thus, the
handling of the window system is left to the application programmer. Having
the programmer handle windowing is different from Iris GL, but was
considered necessary for Mesa in order to achieve hardware independence.
OpenGL is the standard for 3D computer graphics and is managed by the
Architecture Review Board. Implementations are available for a number of
operating systems: different flavours of Unix, Windows and MacOS. Mesa also
supports all these platforms. OpenGL requires an extension, GLX, in the X
server to run. Mesa does not need this extension as it emulates the calls to
GLX. There are commercial implementations of OpenGL available for Linux
which also include X servers with GLX.

OpenGL/Mesa (I will use only the term Mesa in the following text, but it should
be noted that everything applies to OpenGL as well) do not provide high-level
commands for describing models in 3D. They do provide the necessary
graphics primitives (e.g., points, lines, polygons) to build and manipulate
models. Mesa provides the programmer with the ability to perform model
building and manipulation completely in three dimensional space. All the
details of converting the 3D model to a drawing on a flat screen are handled by
the library, including one of the most tedious tasks in 3D programming—
removal of hidden lines and surfaces. Mesa also offers “special effects” such as
texture mapping, fog or blending.

Mesa's primary ftp site is iris.ssec.wisc.edu, but it can also be found at the usual
places for Linux. Installation is easy—first unload the archive file using the
command:

gzcat Mesa-1.2.8.tar.gz | tar xf -

then for a.out give the command:

make linux

or for ELF give:

make linux-elf

Executing make will compile the Mesa library, the GL utility library (GLU), the tk
and auxiliary libraries, and a whole bunch of example programs. (Mesa's
makefile comes configured for 46 different operating systems, including MS
Windows.) I have found compilation to be hassle free on at least Linux, AIX, Irix
and OSF1. The compiled libraries can be found in Mesa-1.2.8/lib and should be
installed in either /usr/lib or /usr/local/lib. The header files (Mesa-1.2.8/include)
should also be copied to either /usr/include or /usr/local/include. This step was
not included in our make process—the following examples all assume that
Mesa is installed in both /usr/local/lib and /usr/local/include.

The compilation produces a total of four libraries.

• 1) libMesaGL.* contains all the basic graphics code.
• 2) libMesaGLU.* provides some higher level functions, such as

subroutines to draw geometric objects, splines etc.
• 3) libMesaaux.* is an auxiliary library that is not really a part of Mesa.

Since Mesa is window system independent, some simple window
manipulation functions were needed. This library was created to
demonstrate the features of OpenGL in the OpenGL Programming Guide
(“The Red Book”). It is included with Mesa so that all the example
programs from “The Red Book” which are included in the Mesa
distribution can be compiled.

• 4) libMesatk.* is another window system support library. libMesaaux.*
relies on libMesatk.*, so to successfully link a program which uses
libMesaaux.* -lMesatak must be added to the command line.

I don't wish to bore you with the usual “Hello, world” program. So since Mesa is
a graphics library, we will start with something more appropriate to its function.
Let's draw some geometric shapes:

#include<stdlib.h>
#include<GL/gl.h>
#include<glaux.h>
void display(void
{
 glClearColor(1.0, 1.0, 1.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.0, 0.0);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
 glBegin(GL_LINES);
 glVertex2f(-1.0, -1.0);
 glVertex2f(1.0, 1.0);
 glEnd();
 glBegin(GL_POLYGON);
 glVertex2f(0.25, -0.75);
 glVertex2f(0.75, -0.75);
 glVertex2f(0.75, -0.25);
 glVertex2f(0.25, -0.25);
 glEnd();
 glFlush();
}
void main(int argc, char **argv)
{
 auxInitDisplayMode(AUX_SINGLE | AUX_RGB);
 auxInitPosition(0, 0, 500, 500);
 auxInitWindow(argv[0]);
 auxMainLoop(display);
}

As you can see, there is a naming convention for all functions. All Mesa
functions start with the letters gl. Functions in the auxiliary library start with the
letters aux. The first two calls to the auxiliary library in main() specify the
desired frame buffer configuration, i.e. single buffered, rgb mode. (There is also
a double buffered configuration for animations and a colormap mode, but rgb
mode is preferred and is easier to handle.) The third call opens a window, and

the fourth call enters an infinite loop in which the function display() will be
called whenever a redraw request is received from X windows. As I mentioned
earlier, Mesa does not deal directly with the interface to the windowing system.
The auxiliary library provides only the very basics and is not suited for larger
programs—more about alternatives later.

The display() function starts with two calls to clear the background of the
window to white—first we specify the desired color with glClearColor() and then
we clear the color buffer with glClear(). Following that we set the drawing color
to black and set up a projection matrix using glMatrixMode(), glLoadIdentity()

and glOrtho(). Since Mesa can handle all the necessary mathematics to create a
2D drawing from our 3D world, we have only to give the instructions for making
the projections. First we use glMatrixMode() to specify that we are going to
manipulate the projection matrix. (There is a modeling matrix to translate or
rotate objects that we discuss later.) Then we load an identity matrix to initialize
the matrix stack, and finally, we use glOrtho() to specify an orthogonal
projection. Now we draw a line from the lower left to the upper right corner of
the window and a square in the lower right quadrant.

All drawing primitives in Mesa are created by embracing their vertex
specifications with calls to glBegin() and glEnd(). In the call to glBegin() we
specify the primitive we wish to draw. Available primitives are GL_POINTS,
GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_POLYGON, GL_QUADS,
GL_QUAD_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP and GL_TRIANGLE_FAN.

Finally, we call glFlush() to tell Mesa to flush its graphics pipeline and display the
objects we have specified. To compile our demo program (assume it has been
stored under the name demo1.c), we execute the following command (note
that the standard Xlib, the X extension library and the math library are needed
to resolve all references from Mesa):

cc -o demo1 demo1.c -I/usr/local/include -L/usr/local/lib \
-lMesaaux -lMesatk -lMesaGL -lXext -lX11 -lm

Figure 1 shows the result of the execution of our program which is exited by
pressing the <ESC> key. This exercise was definitely easier to program using the
Mesa libraries than using X window directly.

Figure 1. Demo Program Output

Now, since Mesa is a library for 3D graphics, let's create a three dimensional
object. Replace the display() function in our first example with the following
calls:

 void display(void)
{

https://secure2.linuxjournal.com/ljarchive/LJ/031/0174f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0174f1.html

 glClearColor(1.0, 1.0, 1.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.0, 0.0);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
 glRotatef(45.0, 0.0, 1.0, 0.0);
 glRotatef(30.0, 0.0, 0.0, 1.0);
 auxWireCube(1.0);
 glFlush();
}

Recompile. Instead of using glBegin()/glEnd() pairs to specify the vertices for an
object, we now use one of the auxiliary library functions to draw a wire frame
cube. The two glRotatef() calls before the drawing change the model view
matrix. Since rotations can only change the model view matrix, we are not
required to switch to the model view matrix mode explicitly; the switch is made
automatically by Mesa. The first call rotates the object 45 degrees about the Y
axis, the second 30 degrees about the Z axis. The final letter, f, of glRotatef()

indicates that its arguments are floating point. (Functions that end with the
letter d, i or s accept arguments of type double, integer or short, respectively.)
Internally, Mesa uses the float version of a function; thus, calling this version
directly saves an additional function call within Mesa. Figure 2 shows the output
generated by running this version of our program.

Figure 2. Wire Frame Cube

Next, we add interactivity to our program. To allow an interactive rotation of
our cube, we have only to add some lines that deal with input:

#include<stdlib.h>
#include<GL/gl.h>
#include<glaux.h>
float xangle=0.0, yangle=0.0;
void display(void)
{
 glClearColor(1.0, 1.0, 1.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.0, 0.0);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
 glRotatef(xangle, 1.0, 0.0, 0.0);
 glRotatef(yangle, 0.0, 1.0, 0.0);
 auxWireCube(1.0);
 glFlush();
}
void rotX1(void)
{
 xangle+=5.;
}
void rotX2(void)
{
 xangle-=5.;
}
void rotY1(void)
{
 yangle+=5.;
}
void rotY2(void)
{
 yangle-=5.;
}
void main(int argc, char **argv)

https://secure2.linuxjournal.com/ljarchive/LJ/031/0174f2.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0174f2.html

{
 auxInitDisplayMode(AUX_SINGLE | AUX_RGB);
 auxInitPosition(0, 0, 500, 500);
 auxInitWindow(argv[0]);
 auxKeyFunc(AUX_LEFT, rotX1);
 auxKeyFunc(AUX_RIGHT, rotX2);
 auxKeyFunc(AUX_UP, rotY1);
 auxKeyFunc(AUX_DOWN, rotY2);
 auxMainLoop(display);
}

The display() function is nearly identical to the one in the previous example, we
have exchanged the hard coded angle for a variable. Our main() function now
includes four calls to auxKeyFunc() allowing us to specify a callback function
that is called when a certain key is pressed (the constants used here refer to
the cursor keys). Finally, we need functions that will increase or decrease the
rotation angle of the cube depending on which key is pressed. The program is
again compiled in the same manner. When this version of our program is
running, the cube can be rotated by pressing any of the cursor keys.

Sidebar: Messa/OpenGL Resources

We would probably prefer our application to use the mouse to rotate the cube,
but we are currently limited to the functions provided by the auxiliary library.
To undertake writing the program to use mouse clicks instead of cursor keys
would require us to use one of the more sophisticated X windows interfaces
(but thats another article).

Finally, we will add some light effects to our cube demo and show how to
remove hidden surfaces. These calculations are also easily handled by calls to
Mesa, and the programmer does not have to worry about the underlying, non-
trivial mathematics. We again modify the display() function as follows:

void display(void)
{
 GLfloat light0[4] = {0.5, 0.8, 1.0, 0.0};
 GLfloat color[4] = {1.0, 0.0, 0.0, 0.0};
 glClearColor(1.0, 1.0, 1.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glLightfv(GL_LIGHT0, GL_POSITION, light0);
 glRotatef(xangle, 1.0, 0.0, 0.0);
 glRotatef(yangle, 0.0, 1.0, 0.0);
 auxSolidCube(1.0);
 glFlush();
}

Since drawing a wire frame cube with lighting enabled does not make much
sense, we will use a solid cube. For a solid cube to be rendered correctly we
need to remove hidden surfaces. In Mesa this can be accomplished by using
the z-buffer which stores information about the depth value of a point in 3D

https://secure2.linuxjournal.com/ljarchive/LJ/031/0174s1.html

space. Mesa will then automatically only draw pixels which are visible. To
initialize the z-buffer prior to the drawing we just add the constant
GL_DEPTH_BUFFER_BIT to the call to glClear().

For lighting calculations we cannot simply use a drawing color—we have to link
a color to an object. Mesa uses “materials” to make this link and allows us to
specify the properties of a material. The call to glMaterialfv() assigns red as the
color for diffuse reflections to both the front and back sides of all polygons. We
specify the position of the light with a call to glLightfv(). Mesa can use a number
of different lights (at least 8 are guaranteed), and the constants GL_LIGHT0 ...

GL_LIGHT7 can be used to reference them. GL_POSITION informs Mesa that we
are specifying a position (other possibilities include light and color), and the
vector light0[] places the light on the specified axis at infinite distance. This
particular axis is used to achieve different light intensities on the different faces
of the cube. Notice that these two functions show another type of naming
convention—both names end with the letters fv, i.e., the arguments are vectors
of floating point values.

We also need to modify the main() function to include z-buffering and lighting
calculations:

void main(int argc, char **argv)
{
 auxInitDisplayMode(AUX_SINGLE | AUX_RGB | AUX_DEPTH);
 auxInitPosition(0, 0, 500, 500);
 auxInitWindow(argv[0]);
 auxKeyFunc(AUX_LEFT, rotX1);
 auxKeyFunc(AUX_RIGHT, rotX2);
 auxKeyFunc(AUX_UP, rotY1);
 auxKeyFunc(AUX_DOWN, rotY2);
 glShadeModel(GL_SMOOTH);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
 glDepthFunc(GL_LESS);
 auxMainLoop(display);
}

First the constant AUX_DEPTH in the call to auxInitDisplayMode() instructs X
windows to provide a window with a z-buffer. We then use smooth shading
(glShadeModel()) to draw polygons that have varying color over the face of the
polygon. If we used flat shading (the default), the different polygons would be
clearly visible. Of course, that would not make a difference in the case of a
cube, but would with other objects (e.g., replace the cube with a cone using
auxSolidCone(1.0, 1.0) and see the result). Finally, we enable lighting
calculations, light0 and depth testing using calls to glEnable(). For depth testing
we specify a function to compare the depth values so that only smaller values,
i.e., closer to the viewer, are considered. Recompile. The lit, rotatable cube
shown in Figure 3 is the output of our program after some rotations have been
done.

https://secure2.linuxjournal.com/ljarchive/LJ/031/0174f3.html

Figure 3. Rotatable Cube

We have now covered the basic drawing operations to produce realistic 3D
scenes using Mesa. The auxiliary library used in these examples is insufficient
as an interface to the window system for larger scale programs. One alternative
is to use the GL Utility Toolkit (GLUT) that transparently provides the same
functionality as Iris GL (e.g., window and event handling, menus). GLUT was
written by Mark Kilgard at Silicon Graphics and is available free. Another option
is to use OpenGL widgets that are provided with the Mesa package in the
widgets subdirectory. (This subdirectory must be compiled separately.) A
program could then do all the windows and events handling in the normal X
fashion and create one or more OpenGL widgets to display 3D graphics.
Drawing into these widgets can be accomplished using calls to Mesa. As a final
example of what Mesa can do, Figure 4 shows a rendering of a molecular
orbital of benzene using my molecular graphics program Viewmol. (The
OpenGL/Mesa version of Viewmol has not been released yet, but will appear at
the same locations where the Iris GL version can be found today: ftp://
ccl.osc.edu/pub/chemistry/software/SOURCES/C/viewmolorftp://ftp.ask.uni-
karlsruhe.de/pub/education/chemistry/viewmol_ask.html)

Figure 4.Molecular Orbital of Benzene

Jörg-Rüdiger Hill (jxh@msi.com) was born in Berlin, Germany and holds a Ph.D.
in theoretical chemistry. He works for a molecular modeling software company
and is currently porting his molecular graphics program Viewmol to Linux. He
has been running Linux since version 1.0.9. He much prefers the Southern
Californian weather over that in Berlin.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/031/0174f3.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0174f4.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0174f4.html
mailto:jxh@msi.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Qt GUI Toolkit

Eirik Eng

Issue #31, November 1996

This GUI toolkit makes porting graphics to multiple platforms a snap.

Developing applications with graphical user interfaces (GUI) takes time and can
be hard work. Making these applications work across different operating
systems can be even more complex. Traditionally, applications have been
developed for one platform, and then large amounts of the code have been
rewritten to port the application to other platforms. Multi-platform GUI toolkits
have changed that procedure.

A multi-platform GUI toolkit makes it easier to port applications between
platforms. Developing applications with a GUI toolkit is also considerably easier
and a lot less work than using a window-system directly (e.g., X11 or Windows).
The Qt toolkit is a multi-platform C++ GUI toolkit (class library) that has been
developed over a 4 year period. The company Troll Tech AS was founded 2 1/2
years ago to secure future development of Qt.

As one of the Qt developers, I can give you an introduction to and overview of
Qt. In the process, I'll throw in my 2 cents worth of general GUI-programming
techniques.

The following sections can be found in this article:

• The Qt Story—background information about Qt
• Signals and Slots—Qt's object communication mechanism
• The Qt Paint Engine—drawing graphics with Qt.
• Qt Event Handling—how to get those user clicks and window system

events in Qt
• Double-buffering—a well known and very useful GUI programming

technique

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Making Your Own Software Components—how to code a new software
building block

• Dialog Boxes—putting it all together and making it run
• Hints and Tips—my 2 cents worth of GUI-programming experience.

The Qt Story

The first publicly available version of Qt was released in May 1995. Version 0.98
was recently released (July 1996) and included complete source code for X11.
Version 1.0 is scheduled for September 1996. Qt for X11 has a non-commercial
license which grants any developer the right to use Qt to develop software for
the free software community. The non-commercial version of Qt includes the
full X11 source code. With this license, Troll Tech hopes to promote the
development of high quality free software. Qt is an emulating GUI toolkit which
allows programmers a choice between the Motif and the Windows look and
feel. It implements its own widgets (user interface elements), and the X11
version of Qt is implemented directly on top of Xlib and uses neither Xt nor
Motif. Practically all classes and member functions in Qt are documented. The
documentation is available in HTML, postscript, text and as manual pages. The
HTML version is fully cross-referenced with links to code examples. In addition,
there is a tutorial for the Qt beginner. You can see the documentation on the
web at http://www.troll.no/qt/.

Troll Tech has used Linux as its main development platform for over 2 years. All
X11 development is done first on Linux, then the source is moved to other
platforms for testing and porting. Qt currently runs under several variants of
UNIX, Windows 95 and Windows NT.

Signals and Slots

Let's first look at the part of Qt that probably differs most from other GUI
toolkits—the mechanism for object communication. One of the most feared
and hackish aspects of GUI programming has always been the dreaded
callback-function. In most toolkits, widgets have a pointer to a function for each
action they trigger. Anyone who has worked with function pointers knows that
this can get quite messy. Qt has approached the problem of communication
between GUI objects (and other objects for that matter) in a totally new way. Qt
introduces the concepts of signals and slots, that eliminate the need for
pointers to functions, and provide a type-safe way to send arguments of any
type. All Qt objects (classes that inherit from QObject or its descendants, e.g.,
QWidget) can contain any number of signals and slots. When an object changes
its internal state in a way that might be interesting to the outside world, it emits
a signal (not to be confused with UNIX interprocess signals), and then goes on
happily minding its own business, never knowing or caring if anybody receives
the signal. This important feature allows the object to be used as a true

http://www.troll.no/qt

software component. Slots are member functions that can be connected to
signals. A slot does not know or care if it has a signal connected to it. Again, the
object is isolated from the rest of the world, and can be used as a true software
component. These two simple concepts make up a powerful component
programming system. They may seem awkward when encountered for the first
time, but they are a lot more intuitive and easier to both learn and use than the
alternatives. Let's look at how signals and slots are specified in a class
declaration. The following class is a stripped down version of the class shown in
code Listing 3:

class PixmapRotator : public QWidget
{
 Q_OBJECT
public:
 PixmapRotator(QWidget *parent=0,
 const char *name=0);
public slots:
 void setAngle(int degrees);
signals:
 void angleChanged(int);
private:
 int ang;
};

Signals and slots are specified syntactically using C++ categories in the class
declaration. This class defined above has a slot called setAngle. Slots are
normal member functions and must have an access specifier. They are, as with
other member functions, implemented by the programmer, and can be
overloaded or virtual.

The PixmapRotator class has a single signal, angleChanged, which it emits when
its angle has changed value. Signals are declared in the class declaration by the
programmer but the implementation is generated automatically. To emit a
signal, type:

emit signal(arguments)

The implementation of the slot looks like this:

void PixmapRotator::setAngle(int degrees)
{
// keep in range <-360, 360>
 degrees = degrees % 360;
// actual state change?
 if (ang == degrees)
 return;
 ang = degrees; // a new angle
 emit angleChanged(ang); // tell world
 ...
}

Note that setAngle only emits the signal, if the value actually changed (as the
name of the signal implies). A signal should only be emitted when a state
change has occurred.

To connect a signal to a slot the QObject static member function connect is
used, for example:

connect(scrollBar, SIGNAL(valueChanged(int)),
 rotator, SLOT(setAngle(int)));

Here the QScrollBar scrollBar's signal valueChanged is connected to the
PixmapRotator rotator's slot setAngle. This statement assures that whenever
the scrollbar changes its value (e.g., if the user clicks on one of its arrows) the
angle of the PixmapRotator object will change accordingly. The two objects can
interact without knowing about each other as long as a connection is set up by
a third party.

As you can see, signals and slots can have arguments. The last argument(s)
from a signal can be discarded, but otherwise the arguments must match for a
connection to be made.

An arbitrary number of slots can be connected to a single signal and vice versa.

Technically, signals and slots are implemented using the Qt meta object
compiler (moc). It parses C++ header files and generates C++ code necessary
for Qt to handle signals and slots. The signals, slots and emit keywords are
macros, so the compiler preprocessor changes or removes them.

Signals and slots are efficient. Of course they are not as fast as a direct function
pointer call, but the difference is small. A signal triggering a slot has been
measured to approximately 50 microseconds on a SPARC2.

The Qt Paint Engine.

Qt contains a device independent drawing engine, implemented in the class
QPainter. QPainter is highly optimized and contains several caching
mechanisms to speed up drawing. Under X11, it caches GCs (graphics contexts),
which often make it faster than native X11 programs. QPainter contains all the
functionality one would expect from a professional 2D graphics library.

The coordinate system of a QPainter can be transformed using the standard 2D
transformations (translate, scale, rotate and shear). These transformations can
be done directly or via a transformation matrix (QWMatrix), exactly as in
postscript. Here is a small example taken from www.troll.no/qt showing the use
of coordinate transformations:

void LJWidget::drawLJWheel(int x, int y, QPainter *p)
{
// set center point to 0,0
 p->translate(x, y);

// 24 point bold Times

http://www.troll.no/qt

 p->setFont(QFont("Times", 24, QFont::Bold));

// save graphics state
 p->save();

// full circle
 for(int i = 0 ; i < 360/15 ; i++) {

// rotate 15 degrees more
 p->rotate(15);

// draw rotated text
 p->drawText(0, 0, "Linux");
 }
 p->restore(); // restore graphics state
 p->setPen(green); // green 1 pixel width pen
// draw unrotated text
 p->drawText(0, 0, "Linux Journal");
}

This member function draws a text “wheel” with the center given at a specified
point. First the coordinate system is transformed so that the given point
becomes the point (0,0) in the new coordinate system. Next a font is set, and
the graphics state is saved. Then the coordinate system is rotated 15 degrees at
a time, clockwise, and the text “Linux” is drawn to form a textual “wheel”. The
graphics state is then restored , the pen set to a green pen and the text “Linux
Journal” is displayed. Note that it is not strictly necessary to save the graphics
state since we do a full 360 degree rotation. Saving the graphics state is strictly
defensive programming—if we were to change the for loop, which is doing the
rotation, we could still guarantee that the last text would be output
horizontally.

Qt has a font-abstraction implemented in the QFont class. A font can be
specified in terms of the font family, point size and several font attributes. If the
specified font is not available, Qt uses the closest matching font.

The drawLJWheel function can be used to generate output on any device since
it merely uses a pointer to a QPainter. It does not know what kind of device the
painter is operating on. The function is put into a widget in code, see http://
www.troll.no/qt. Running it produces the result shown in Figure 1.

Figure 1. LJ Widget Output

Support Classes

Qt also contains a set of general purpose classes and a number of collection-
classes to ease the development of multi-platform applications. The hardest
part of generating portable code has always been operating system dependent
functions. Qt has platform independent support for these functions, such as
time/date, files/directories and TCP/IP sockets. Sometimes it might be
necessary to use the underlying window system resources directly, e.g., when
interfacing with other libraries. Qt gives direct access to all low-level window IDs

http://www.troll.no/qt
http://www.troll.no/qt
https://secure2.linuxjournal.com/ljarchive/LJ/031/0201f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0201f1.html

and other resource IDs. Troll Tech has used this access to write a small widget
that makes it possible to use OpenGL/mesa within a Qt widget.

Qt Event Handling

The structure of any GUI program is based on events. This basis is the main
difference between GUI programming and non-GUI programming. A GUI
program does not have “control” over the application; it merely waits for an
event, does something as a response, and then waits for the next one.

A program typically sets up a top level widget to call the main event loop, which
then dispatches events as they are received from the user or other parts of the
system.

This model can be elegantly applied in an object-oriented language by using
subclasses and reimplementation of virtual functions in the classical C++ event
mechanism that is also used by Qt. The QWidget class contains one virtual
function for each event type. A new type of widget is made by subclassing
QWidget (or one of its descendants). You can simply reimplement an event
function for each type of event you wish to receive. The event functions
together with the Qt paint engine make up a powerful toolbox for creating
custom widgets.

By far the most important event a widget receives is the paint event. It is called
by the main event loop whenever the widget needs to draw a part of itself.
Below is an example of a simple paint event, taken from code, http://
www.troll.no/qt:

void CustomWidget::paintEvent(QPaintEvent *e)
{
// necessary to draw?
 if (rect.intersects(e->rect())) {
 QPainter p;
 p.begin(this); // paint this widget
 p.setBrush(color); // fill color
 p.drawRect(rect); // draw rectangle
 p.end();
 }
}

CustomWidget contains the member variable rect with type QRect, containing a
rectangle with a one pixel black outline and filled with a color. Another member
variable is color with type QColor, containing the color used to fill the rectangle.

First we check if the rectangle intersects the part of the widget that is to be
updated. If it does, we instantiate a QPainter, open it on the widget, set its
brush to the correct color and draw the rectangle (the default pen is one line
thick and black).

http://www.troll.no/qt
http://www.troll.no/qt

All event functions take a pointer to an event object as their single argument.
QPaintEvent contains the rectangular area of the widget that must be redrawn.

In the same widget we also receive resize events like this:

void CustomWidget::resizeEvent(QResizeEvent *)
{
// widget size - 20 pixel border
 rect = QRect(20, 20, width() - 40,
 height() - 40);
}

This event function sets the rectangle to be the size of the widget minus a 20
pixel border on all sides. It is never necessary to repaint a widget in a resize
event since Qt always sends a paint event after the resize event when a widget
has been resized.

CustomWidget also receives mouse press, move and release events like this:

void CustomWidget::mousePressEvent(QMouseEvent *e)
{
// left button click
 if (e->button() == LeftButton &&
// on rectangle?
 rect.contains(e->pos())) {
// set rectangle color to red
 color = red;
// remember that it was clicked
 clicked = TRUE;
// repaint without erase
 repaint(FALSE);
 }
}
void CustomWidget::mouseMoveEvent(QMouseEvent *)
{
// clicked and first time?
 if (clicked && color != yellow) {
 color = yellow; // set color to yellow
 repaint(FALSE); // repaint without erase
 }
}
void CustomWidget::mouseReleaseEvent(QMouseEvent *e)
{
 if (clicked) { // need to reset color
 color = green; // set color to green
 repaint(FALSE); // repaint without erase
 clicked = FALSE;
 }
}

The mouse press event sets the rectangle color to red if the left mouse button
is clicked inside the rectangle. When the mouse is moved after a click on the
rectangle the color will change to yellow. Finally the color is reset to green when
the mouse button is released.

The calls to repaint cause the entire widget to be redrawn. The FALSE argument
instructs Qt not to erase the widget (fill it with the background color) before
sending the paint event. We can use FALSE, because we know that paintEvent

will draw a new rectangle covering the old one. Painting in this manner reduces
flickering considerably; otherwise, double-buffering should be used.

The full widget code can be found in www.troll.no/qt . Running it produces the
result shown in Figure 2. Custom Widget Output

Double-buffering

Flickering is a common problem in graphics programming. Some GUI programs
do updating by clearing the area of a widget and then draw the different
graphics elements. This process normally takes enough time for the eye to
notice the clearing and drawing process. The widget flickers, the program looks
unprofessional and fatigues the eyes of the users.

A technique called double-buffering can be used to solve this problem. A
pixmap (i.e., pixel map—an off-screen memory segment used as if it were a
part of the screen raster buffer) is used, and all drawing is done off-screen on
this pixmap. The pixmap is then transferred to the screen in one lightning-fast
operation. This pixmap transfer is normally so fast that on most systems it
appears instantaneous to the human eye.

Sometimes a pixmap the size of the widget to update is used, in other cases,
only certain parts of the widget are double-buffered. Which method will be
most effective must be considered in each case.

Pixmaps often contain large amounts of data and are often slow to create and
handle (in CPU-time). A good technique is to store the buffer pixmap as a part
of the widget. When the widget needs to update itself (in Qt, whenever it
receives a paint event), it simply copies the required part of the buffer pixmap
to the part of the widget that must be repainted.

Often, it is useful to include a dirty flag as a part of the widget. All state changes
(i.e., changes to member variables) that affect the visual appearance of the
widget can then simply set this flag to TRUE telling the widget to repaint itself.
The paint event function then checks the dirty flag, and updates the buffer
pixmap before it updates the screen. This ensures that all widget painting code
is in one place, making the widget easier to maintain and debug.

I've found this technique to be very useful and powerful and have used it on a
variety of GUI-systems, as well as Qt.

Making Your Own Software Components

OK, now that we've looked at different parts of Qt, let's use it to build a custom-
made software component that can display an image and rotate it by an angle.
This widget should contain slots with instructions to let the user choose a file
on disk, and it should have the ability to print the rotated image on a printer.

http://www.troll.no/qt
https://secure2.linuxjournal.com/ljarchive/LJ/031/0201f2.html

As a start we decide to give it the following signals and slots:

public slots:
 void setAngle(int degrees);
 void load();
 void print();
signals:
 void angleChanged(int);
 void filePathChanged(const char *);

We can now set the rotation angle setAngle, let the user choose a new image
file load, and print the image print. We choose to implement the functionality
we need for the first version first. Later this component can be expanded to
include slots like setPixmap(QPixmap) or setFilePath(QString).

The two signals tell the world about a change in the rotation angle
(angleChanged) or the image file being displayed (filePathChanged).

Next, we include two member functions to fetch the angle and file path:

public:
 int angle() const { return ang; }
 const char *filePath() const { return name; }

And we include the following member variables:

private:
 int ang;
 QString name;
 QPixmap pix;
 QPrinter printer;
 QFileDialog fileDlg;
 QPixmap bufferPix;
 bool dirty;

By setting these variables, we store an angle, file name, pixmap, printer and file
selection dialog in the component. We want the widget to update itself
smoothly and have decided to use the double-buffering technique, so we store
a buffer pixmap. In addition, we have a dirty flag which is set when the widget
needs to update the buffer pixmap. The combination of a buffer pixmap and a
dirty flag is a very useful and powerful GUI technique that can be used in a
large range of widgets.

Also, the widget has a paint event function and a resize event function, see
code Listing 3 for the full class declaration.

Since we want to be able to paint to both the screen and a printer, we put the
drawing code in a private member function that operates on a QPainter:

void PixmapRotator::paintRotatedPixmap(QPainter *p)
{
// need device width and height
 QPaintDeviceMetrics m(p->device());
// center point

 p-$gt;translate((m.width())/2,
 (m.height()) / 2);
 p->rotate(ang);
 p->drawPixmap(- (pix.width())/2,
 - (pix.height())/2, pix);
}

First we fetch the metrics of the device the painter is operating on. We use the
width and height of the device to put the center (0,0) of our coordinate system
in the middle of the device. Next we rotate the coordinate system by the
wanted angle and draw the pixmap with its center point at (0,0). In other words,
the center point of the pixmap is put at the center point of the device.

The paint event function looks like this:

void PixmapRotator::paintEvent(QPaintEvent *e)
{
 if (dirty) { // buffer needs update?
// same size as widget
 bufferPix.resize(size());
// clear pixmap
 bufferPix.fill(backgroundColor());
 QPainter p;
// paint on buffer pixmap
 p.begin(&bufferPix);
 paintRotatedPixmap(&p);
 p.end();
 dirty = FALSE; // buffer now new and clean
 } // update exposed region:
 bitBlt(this, e->rect().topLeft(), &bufferPix,
 e->rect());
}

If the widget is “dirty”, we need to update the buffer pixmap. We set its size to
the size of the widget, clear it and call our local painting function. Don't forget
to reset the dirty flag when a buffer pixmap has been updated.

Finally, we use the QPaintEvent pointer to find out which part of the widget
must be updated and call bitBlt. bitBlt is a global function that can transfer data
from one paint device to another as fast as possible. bitBlt is common GUI
shorthand for “bit block transfer”.

With double-buffering and a dirty flag, the resize event function becomes trivial:

void PixmapRotator::resizeEvent(QResizeEvent *e)
{
 dirty = TRUE; // need to redraw
}

Again, it is never necessary to repaint a widget in a resize event, since Qt
automatically sends a paint event after the resize event.

With a common drawing function doing printing is also easy:

void PixmapRotator::print()
{
// opens printer dialog
 if (printer.setup(this)) {

 QPainter p;
 p.begin(&printer); // paint on printer
 paintRotatedPixmap(&p);
 p.end(); // send job to printer
 }
}

First we let the user setup the printer, then we open a painter on that printer,
and finally, call the drawing function.

Loading a new image takes a bit more code:

void PixmapRotator::load()
{
 QString newFile;
 QPixmap tmpPix;
 while (TRUE) {
// open file dialog
 if (fileDlg.exec() != QDialog::Accepted)
 return; // the user clicked cancel
// get the file path
 newFile = fileDlg.selectedFile();
// is it an image?
 if (tmpPix.load(newFile))
 break; // yes, break the loop
 QString s; // build a message string
 s.sprintf("Could not load \"%s\"",
 newFile.data());
// sorry!
 QMessageBox::message("Error", s);
 }
 pix = tmpPix; // keep the pixmap
 name = newFile; // new file name
 emit filePathChanged(name); // tell world
 dirty = TRUE; // need to redraw
 repaint(FALSE); // paint the whole widget
}

We set up a loop that opens the file dialog box. If the user has selected a file
that cannot be loaded, we tell her and let her try again. If a valid file has been
selected, we copy the new pixmap and the file path. Finally, we emit a signal to
tell the world, mark the widget as dirty and repaint all of it (the FALSE argument
means that Qt should not clear the widget before sending the paint event).

We have now made a new software component which can be connected to
others through the signal/slot mechanism. See www.troll.no/qt for the full code
of the PixmapRotator widget.

Dialog Boxes

Finally, let's use our component to put together a dialog box. Most GUI
applications contain these boxes. Dialogs are windows with a number of
widgets as children. A typical example of a dialog is an input form for a
database with a text field for each database field.

Qt contains the standard widgets needed to build dialogs for most purposes.
This custom built dialog box class has been taken from www.troll.no/qt

http://www.troll.no/qt
http://www.troll.no/qt

class RotateDialog : public QDialog
{
 Q_OBJECT
public:
 RotateDialog(QWidget *parent=0,
 const char *name=0);
 void resizeEvent(QResizeEvent *);
private slots:
 void updateCaption();
private:
 QPushButton *quit;
 QPushButton *load;
 QPushButton *print;
 QScrollBar *scrollBar;
 QFrame *frame;
 PixmapRotator *rotator;
};

The RotateDialog class inherits from QDialog and contains 3 pushbuttons, a
scrollbar, a frame and the custom made pixmap rotator. The dialog only has
three member functions. The constructor initializes the different widgets in the
dialog, resizeEvent sets the position and size of the widgets, and the slot
updates the caption text of the dialog.

Let's take a look at the constructor:

RotateDialog::RotateDialog(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 frame = new QFrame(this, "frame");
 frame->setFrameStyle(QFrame::WinPanel |
 QFrame::Sunken);
 rotator = new PixmapRotator("this, rotator");
 rotator->raise(); // put it in front of frame
 quit = new QPushButton("Quit", this, "quit");
 quit->setFont(QFont("Times", 14,
 QFont::Bold));
 load = new QPushButton("Load", this, "load");
 load->setFont(quit->font());
 print = new QPushButton("Print", this,
 "print");
 print->setFont(quit->font());
 scrollBar = new QScrollBar(QScrollBar::Horizontal,
 this, "scrollBar");
 scrollBar->setRange(-180, 180);
 scrollBar->setSteps(1, 10);
 scrollBar->setValue(0);
 connect(quit, SIGNAL(clicked()), qApp,
 SLOT(quit()));
 connect(load, SIGNAL(clicked()), rotator,
 SLOT(load()));
 connect(print, SIGNAL(clicked()), rotator,
 SLOT(print()));
 connect(scrollBar, SIGNAL(valueChanged(int)),
 rotator , SLOT(setAngle(int)));
 connect(rotator, SIGNAL(angleChanged(int)),
 SLOT(updateCaption()));
 connect(rotator,
 SIGNAL(filePathChanged(const char *)),,
 SLOT(updateCaption()));
 setMinimumSize(200, 200);
}

The different widgets have now been instantiated and initialized. We also want
to put a frame around the pixmap rotator, so it is raised (popped to the front of
the window stack) in order to make sure it is in front of the frame.

The scroll bar is set up to represent a value in the range [-180,180] with line and
page steps set to 1 and 10 respectively. A line step is used when the user clicks
on a scroll bar arrow, page step when the user clicks between the arrows and
the scroll bar slider.

Then the different widgets are connected. The quit pushbutton is connected to
the applications quit slot (qApp is a pointer to Qt's application object). The load
and print pushbuttons are connected to their respective slots in the pixmap
rotator, and the scrollbar is connected to the pixmap rotators angle value.

Next we connect the rotator's signals to the private slot updateCaption. We are
here using a connect function that only takes three arguments, where the this
pointer is implicit as the receiver. Note that the slot we connect to has fewer
arguments than the signal. All or some of the last arguments of a signal can
always be discarded in this way, if we are not interested in receiving them in a
slot.

Note how we use the standard widgets to control our custom made widget.
PixmapRotator is a new software component which can be plugged into many
different standard interface controls. We could easily have added a menu in
addition by plugging it into the rotator's slots. Keyboard accelerators or a text
field, used to enter a numerical value for the angle, could likewise have been
added without a single change to PixmapRotator.

Finally, we tell Qt that this widget should never be allowed to have a size
smaller than 200x200 pixels. Note that the class does not have a destructor.
Child widgets are always deleted by Qt when the parent is deleted.

There is no interactive dialog builder for Qt at the time of this writing (July
1996), but there is one in the works that will probably be ready by the time you
read this article. Check Troll Tech's home page for details (http://www.troll.no/).
The resize event is implemented as follows:

const int border = 10;
const int spacing = 10;
const int buttonH = 25;
const int buttonW = 50;
const int scrollBarH = 15;
void RotateDialog::resizeEvent(QResizeEvent *)
{
 quit->setGeometry(border, border, buttonW,
 buttonH);
 load->setGeometry((width() - buttonW)/2,
 border, buttonW, buttonH);
 print->setGeometry(width() - buttonW - border,
 border, buttonW, buttonH);
 scrollBar->setGeometry(border,
 quit->y() + quit->height() + spacing,
 width() - border*2, scrollBarH);
 int frameTop = scrollBar->y() +
 scrollBar->height() + spacing;
 frame->setGeometry(border, frameTop,
 width() - border*2,

http://www.troll.no

 height() - frameTop - border);
 rotator->setGeometry(frame->x() + 2,
 frame->y() + 2, frame->width() - 4,
 frame->height() - 4);
}

Each widget is moved and resized according to the dialogs width and height.
The three buttons are placed 10 pixels from the top of the dialog, one on each
side and one in the middle. The scrollbar is placed right beneath them, followed
by the frame. The rotator is put inside of the frame.

Writing code like the above is not difficult, but it's not always easy to read. A
geometry manager solves resizing of dialogs in a more elegant way. Qt's
geometry manager is currently under internal testing at Troll Tech and will soon
be added to the toolkit. The slot is implemented like this:

void RotateDialog::updateCaption()
{
 QString s;
// we do not want the full path
 QFileInfo fi(rotator->filePath());
 s = fi.fileName(); // only the filename
 if (rotator->angle() != 0) { // rotated?
 s += " rotated ";
 QString num;
// convert number to string
 num.setNum(rotator->angle());
 s += num;
 s += "degrees";
 }
 setCaption(s); // set dialog caption
}

We build a message string by using the image file name and its rotation angle.
The string is then used as the dialog's caption.

See www.troll.no/qt for the full code. When run, the user can press on the load
button and Qt's standard file dialog will pop up. If the print button is clicked,
the standard print dialog pops up letting the user choose if the output should
go to a file or to a printer. Under X, Qt generates postscript printer output;
under Windows, the Windows printer driver system is used.

In Figure 3 you can see a screen shot of the RotateDialog together with the
print dialog.

Hints and Tips

If you are new to GUI programming, you might find that your first widget comes
up blank on the screen or not at all. There are two very common reasons for
this to happen.

First of all, a widget's window on the screen can be overwritten at any time by
the window system. The window system does not store the contents for you, it
just calls the widget's paint event function when the widget needs to be

http://www.troll.no/qt
https://secure2.linuxjournal.com/ljarchive/LJ/031/0201f3.html

refreshed. Thus, if you draw on the widget but the paint event function doesn't
reproduce the drawing exactly, you might not see any effect on the widget.
Generally, the best method is to do all your drawing in the paint event function,
and just instruct the widget to do a repaint whenever its state changes.

Secondly, when you create a widget, it is not visible. In Qt, you have to call the
show member function to make widgets visible; other toolkits have a similar
function.

Finally, I would like to mention a few points I consider important when
designing and implementing GUI programs:

• Keep it simple. When you build new widgets and dialogs try to keep their
interfaces as small and elegant as possible. Don't add a lot of functions
that might be nice to have in the future.

• Don't crowd the screen. Try to keep your dialogs as intuitive and
minimalistic as possible. A dialog should be both functional and pleasing
to the eye.

• Use double-buffering. At least when all or parts of a widget will change
significantly over time. Programs that don't flicker look a lot more
professional than the ones that do.

• Cache like crazy. If there are parts of your program that do time-
consuming operations, e.g., generation of pixmaps, save the result so that
you don't have to do the same operations over and over.

• Keep your member variables private—this is good object-oriented
practice. In GUI programming it is even more important. A change in a
variable often means that you have to update the screen. If you set
variables via member functions, you can guarantee that the screen is
always up-to-date.

• Put your drawing code in one place—preferably in a single member
function. Bugs in the relationship between the values in your member
variables and what the widget displays are then located in one place. (You
will be glad you did.)

• Use standard types as arguments to signals and slots. If your signal
contains an int, it can be connected to a large number of slots. If it
contains an argument of the type MyNumber, the widget or dialog will not
be as useful as a component.

Where to Find Qt

The Qt source and binary versions for several platforms (including Linux of
course) can be downloaded from the net at ftp://ftp.troll.no/qt/.

Eirik Eng (iriken@troll.no) is a co-founder of Troll Tech AS, and works there as a
developer. He has a siv.ing. (M.S.) degree from the Norwegian Institute of
Technology and has worked with GUIs and OOP since 1991. His main hobby is
office gardening (perfect for people who spend a lot of time at the office). This
year he is especially proud of his 4 foot high (and still growing) eggplants and
his tamarind tree.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:iriken@troll.no
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Graphics Tools for Linux

Michael J. Hammel

Issue #31, November 1996

You CAN do progressional graphic art on Linux systems. The tools are available,
the documentation is growing, and the user communities offer a wealth of
information and help.

In the Beginning...

Ever since I wrote my first basic program to peek and poke my way through a
series of animated block graphics on a TRS-80 Model 1, I have been intrigued by
the use of computers for graphics. I learned every new language by modifying a
graphics program I had written in some other language. In high school and my
early days of college these programs were simple games—later I learned of the
Mandelbrot and Julia fractal algorithms. These algorithms were relatively simple
to program and so became my tool for learning new languages, environments
and, more importantly, graphics systems.

Over the years this fascination would wax and wane. Not surprisingly, my
interest would peak when some new movie with the latest, greatest special
effects was released. Star Wars came out when I got my hands on the TRS-80,
so naturally I had X-Wing fighters evading a simulated crosshair radar written in
BASIC, albeit by the time the radar locked, the pilot of the X Wing had probably
died from old age.

Late in 1995, a co-worker and I began to work on our company's web pages. I
had done my own pages, but they lacked good graphics. He was convinced he
could do the graphics while I did the HTML. His enthusiasm became annoying
when he began to laud the merits of MS-Windows-based graphic tools like
Adobe Photoshop, and went on about how Linux, and Unix in general, lacked
any such tools. Since I knew most of the special effects I was seeing in movies
were coming from Silicon Graphics or other Unix systems, I knew comparable
tools must be available for Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

And then came Toy Story. I was fascinated. I was enthralled. I was completely
hooked. I set out to find Linux tools that I could use to update my web pages
and to show the world what could be done on a Linux box.

This article introduces the tools I found, tells how the information I gathered
grew into the Linux Graphics mini-HOWTO (see Resources box), and explores
how the graphics arena is evolving on Linux. I assume the reader is a graphics
beginner, and I focus on tools currently available. I touch only briefly on the
programming environments and libraries available to do graphics, since these
require a more in-depth discussion; however, I also don't want to rehash the
Linux Graphics mini-HOWTO. After reading this article, you can check out the
mini-HOWTO to get more details.

Graphics Basics

When you get right down to it, there are really only four types of tools available
for graphics on Linux:

Viewing - tools which display images but don't change
them

Creation - tools which create images

Manipulation - tools which change existing images

Conversion - tools which convert images to new
formats

Various tools are available for each of these types. Many tools fit into more
than one category. The dividing line between categories is not always clear, but
the use of categories helped in organizing the Graphics mini-HOWTO.

Creation tools also provide one of two basic functions: they draw or they
render images. Drawing tools provide the ability to interactively create shapes,
called primitives, such as boxes, circles, cones or torii. Creation tools also
include paint programs. Rendering tools build images based on model
information, i.e., information that describes the shapes of primitives and their
relationships in a scene. The simplest way to distinguish between the two is
that drawing programs generally deal with 2D images, and rendering tools deal
with 3D images. This is an oversimplification but it will suffice for this article.

Images are pictures, basically, which come in a number of formats. GIF, JPEG,
PNG and TGA are some of the more common static image formats, but there
are literally hundreds of others. No one format is the standard, so there isn't
one format that every tool supports. GIF and JPEG are the most widely
supported formats for web browsers, but you can expect to see PNG support in

https://secure2.linuxjournal.com/ljarchive/LJ/031/0162s1.html

many browsers and other tools soon. Which format you use depends on the
tools you use and the way you intend to use the images. For example, GIF isn't
good for large posters, because it lacks support for more than 256 colors per
image. TGA, on the other hand, provides a large range of colors but isn't
supported by web browsers.

Static images, like photographs, are single, independent pictures. Animated
images can be strings of static images or images created on the fly by programs
written using special languages or programming libraries. A lot of interest in
computer graphics has been generated by the use of animated images;
however, it is important for new users to understand static images before
moving into animation. For that reason, animation tools are not discussed in
this article.

A number of programming libraries are available for use in supporting the
various graphics formats and certain types of primitives, functions and
algorithms. Libraries already exist for TIFF, JPEG, PNG, and many other image
formats, so programmers don't have to reinvent the wheel with each new
program they write. Also available are a number of languages and
programming interfaces for creating 2D and 3D graphics and runtime
animation, including VRML, OpenGL and PHIGS.

Figure 1. AC3D Screen with Imported DXF Model for a Sailplane

Figure 2. GIMP Windows

Viewing Tools

In my early days on Compuserve, GIF files were abundant and were viewed with
programs like picem, which had few capabilities beyond displaying the image.
The majority of tools available for Linux today do much more than view images.

A few tools are still around that do little more than view images. xwud (X
Window Undump) is a program delivered with the base set of X11 clients for
displaying files in the X-Windows Dump format created with a companion tool
called xwd (X Window Dump). However, neither of these tools is feature-rich,
and I use them only when I have no other way to do a window screen capture
under X.

Creation Tools

Most of the graphics tools available for Linux fall into the category of creation
tools and allow you to draw or render images, interactively or through some
form of scene description language. One of the most widely known of these is
XPaint, a tool similar in style to the old MacPaint or MS Paint without as many

https://secure2.linuxjournal.com/ljarchive/LJ/031/0162f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0162f2.html

features. Recent updates to the program have helped by providing additional
options, but the rapid growth of tools like Photoshop have made the XPaint
style tools less attractive. XPaint does provide some basic functions useful for
creating texture maps for other tools. For example, one nice feature of XPaint is
the ability to edit individual bits in an image.

A disadvantage to XPaint and similar tools is that it is not designed to deal with
pixels as groups or to allow the modification of pixels by hue, saturation or
intensity. Thus, XPaint gives you a canvas on which to paint, but not the ability
to mix your colors before you paint or to blend colors (or shades of gray) on the
canvas itself.

The first tool I discovered after seeing Toy Story was POV-Ray, the Persistence
of Vision Raytracer. POV-Ray, another form of creation tool, is a 3D
photorealistic renderer (not a drawing program). It works by reading in a text
file that describes the scene to render. The scene describes objects made up of
primitives (boxes, cones, torii, triangles and/or combinations of these and other
shapes), descriptions of the textures to place on these objects, the lighting in
and around the scene and the point of view of the “camera”. Programs that do
raytracing use one particular method for determining how light acts on the
objects, and thus, how the objects will look to the viewer. This method traces
the path of light beams through the scene; how this is done is really
unimportant to all but the most experienced raytracing artist. Other methods
for computing the way light behaves in a scene are radiosity and the REYES
algorithm, the method used in making Toy Story. Tools using these methods
are discussed in the Linux Graphics mini-HOWTO.

The disadvantage to tools like POV-Ray is the lack of user interaction. POV-Ray
is a sort of batch processor—it processes a file and produces output. No
feature of POV-Ray allows you to create input files. Input files must be created
either by hand or by the use of a modeller. Modellers, like CAD systems, use
wireframe representations of the objects in their scenes. The use of wireframes
helps to visualize the scene from various points of view without the overhead of
adding the textures (which generally take a long time to compute, even on fairly
fast systems).

There are three modellers available for Linux: SCED, Midnight Modeller, and
AC3D. SCED, available as source, is portable across multiple Unix platforms and
makes use of the Athena widget set. I found its interface a little difficult to use,
but the ability to group objects, called CSG (Constructive Solid Geometry), was
very nice. Midnight Modeller is a tool ported from the MS-Windows
environment. The author does not release source code, so the program is
available only in binary format. The interface is very CAD-like, but the colors
tend to be harsh, making the program difficult to use. The window features,

such as menus and dialog boxes, are very DOS-like, which I find a distraction on
an X-Window system. Neither of these is the quality of some of the better
modellers for MS-Windows.

AC3D is a new tool with a very nice 3D (Motif-like) interface that uses front and
side view windows and can do some real-time rendering. I came across this tool
just as I was finishing this article, so I haven't had time to give it a proper
review. Of the three, it appears to be the most user-friendly with the most
intuitive interface. AC3D is shareware for Linux (about $15 US) and comes in
binary format only at this time.

When I first started gathering information about graphics tools, I was primarily
using POV-Ray, as I had found the POV-Ray web site with its large collection of
tools. However, the tools were mostly DOS/Windows binaries or written by
DOS/Windows users and included the C source. Since I wasn't running DOS or
Windows and there was little information on which tools would work on Unix, I
started the Unix Graphics Utilities web page (this page is not exclusively for
Linux). I used the information I gathered as the basis for and the incentive to
write the Linux Graphics mini-HOWTO, since all my testing was done using
Linux systems.

Many other tools can fit into the creation category. For example:

• BMRT is a tool that conforms to the Renderman specification, put out by
Pixar. PRMan, which was used to create Toy Story, is another Renderman-
compliant tool (although it is not available on Linux systems).

• Rayshade - another raytracing utility.
• TGIF - a much more sophisticated version of XPaint that allows for the

organizing of primitives into groups and layers, similar to the old
MacDraw tool for the Macintosh.

• HF-Lab is a tool for creating 3D landscapes.

Again, you can get more detail on these tools from the Linux Graphics mini-
HOWTO, including where to obtain the tools.

Figure 3. The POV-Ray Home Page

Manipulation Tools

A manipulation tool that has gained a rather large following in a fairly short
time is the GIMP, Generalized Image Manipulation Program. The GIMP is being
developed primarily by Peter Mattis and Spencer Kimball at UC Berkeley. This
tool, designed as a Unix-based counterpart to the Photoshop-caliber tools
available on other operating systems, has a limited set of base features at this

https://secure2.linuxjournal.com/ljarchive/LJ/031/0162f3.html

time; however, the design includes the ability to add plug-ins which expand the
features of the program. The result of this design philosophy has been a very
large collection of plug-ins from a growing developer base. I've added my own
plug-in, the Sparkle plug-in based on John Beale's Sparkle utility. There are
tutorials and tips and tricks web pages (see the Resources box) as well as a
relatively strong effort to organize the registration, format and distribution of
the plug-ins.

The GIMP provides both user interaction and the ability to combine images
through various blending techniques (nearly all of which are done with plug-
ins). By combining two images, say by subtracting one from the other, it is
possible to take 2D black and white text and turn it into a full-color 3D image
resembling anything from a plasma field to a glowing, tube-shaped jelly. The
GIMP is a major step beyond the basic box, circle and fill capabilities of XPaint.

Combining images is done through what is known as “Channel Operations”
(commonly referred to as channel ops). These are operations on individual
pixels based on the intensities (brightness) or color of the pixel and/or
surrounding pixels. In short, a channel operation is the blending of colors in
one or more images. Channel ops are what make the GIMP a more attractive
tool than XPaint to the graphics artist. (Note that the basic capabilities of XPaint
are not all implemented in the GIMP, so XPaint is still useful.)

The disadvantages of the GIMP are twofold: it is in early development, and its
GUI base is in the process of changing. The reliance on Motif is being removed
and a new toolkit, gtk (the GIMP Toolkit), has been developed. This toolkit is in
the early stages of testing. The base GIMP features and most of the plug-ins
lack any detailed documentation. However, these problems are relatively minor
and are being addressed. The GIMP's advantages are that, at this time, it is the
only freely available program of this caliber, and it has a large support base
from the plug-in development and user communities.

XV is another tool with wide audience appeal. XV, by John Bradley, is a
shareware program that supports a large number of file formats for reading
(displaying) and writing. A large printed document is available to those who
register their copy of the software. Although the number of algorithms for
manipulating images that XV supports is smaller than the plug-in base for the
GIMP, the ability to control the images' colors is much greater in XV. You can
control the hue, saturation and RGB (red, green and blue) levels interactively in
more ways than the GIMP provides (although there is at least one GIMP plug-in
that allows this control to some degree).

From my point of view, the main difference between the GIMP and XV is that
the latter is designed for scientific image processing and the former for artists.

https://secure2.linuxjournal.com/ljarchive/LJ/031/0162s1.html

I'm sure there are a few people who would argue, But I've seen television
interviews of JPL and NASA employees who were using XV to display planetary
images.

Figure 4. Image Produced Using GIMP Plug-ins

Animation Tools

A couple of animation tools are worth mentioning. The first is mpeg_play, a tool
for viewing MPEG-formated animation files. Its companion, mpeg_encode,
creates MPEG files. It can also display XING files, which uses a variation of
MPEG encoding. However, mpeg_play doesn't manipulate the image in a way
that can be saved back to file—it modifies only the displayed image.

Xanim is similar to mpeg_play, but supports a much wider set of input file types
and capabilities for resizing images on the fly.

Conversion Tools

One of the problems you'll encounter when working with graphics tools is
support for specific image file formats. For example, while working with the
GIMP, you may want to work with TGA images, since TGA provides as many as
24 bits of color while GIF formats only provide 8 bits of color. Having a greater
range of colors gives a very smooth blending of colors when you add, subtract,
blur or otherwise manipulate the images with the GIMP. However, if the image
you are creating is destined for a web page, you need to convert it to GIF or
JPEG format. If the GIMP didn't provide a way of doing this (which it does, but
this is just an example), you would need a tool for converting the image
formats.

PBMPlus and NetPBM are a set of tools for converting images between various
formats. PBMPlus tools, originally written by Jef Poskanzer, take one image file
of a particular format as input and convert it to an intermediate format called
PPM (Portable Pixmap). Another PBMPlus tool is then used to convert the PPM
format to the target format. For example, to go from TGA to GIF you might use

tgatoppm input.tga | ppmquant 256 | \
 ppmtogif -interlace > output.gif

The ppmquant is another type of tool in PBMPlus used not to convert the file to
another format, but to alter the image in the same way. In the case of
ppmquant, the input image is quantified down from some large number of
colors to 256. Doing so makes it possible to reduce the size of the data file, and
depending on the image, may not alter the appearance so much as to make it
unusable. You may choose to reduce the number of colors because computers

https://secure2.linuxjournal.com/ljarchive/LJ/031/0162f4.html

can record more subtleties of color than the human eye can distinguish, and on
a web page, small data files make for faster loading.

PBMPlus tools work by processing data from standard input and writing to
standard output, which allows the user to string a collection of tools together in
a series of pipes (as in the above example). All the tools are meant for
command line use, i.e., no graphical interface is available for these tools.

NetPBM is a later incarnation of PBMPlus, after Jef stopped working on it and
development was picked up by another team of developers. However, I believe
Jef has once again returned to working on PBMPlus.

Another conversion tool is ImageMagick. This set of tools has a graphical front
end, but they can also be used as command line tools, similar to the PBMPlus
tools. I haven't used these tools much, but I know they have a number of
supporters.

Programming Interfaces

Programming interfaces aren't really end-user tools, but I'd like to mention a
few, since these interfaces are likely to be the basis of the next generation of
end-user tools.

One of the most popular and widespread programming interfaces is OpenGL,
from Silicon Graphics. OpenGL is a hardware-independent programming
interface that provides commands and operations to produce 3D, interactive
applications. This technology is fairly new and requires support in your X server
to make use of hardware accelerations provided by video adapters. Although
the hardware support is not required in order to use OpenGL, without it or a
relatively fast computer, OpenGL applications will run a bit sluggishly. A freely
available version of OpenGL, known as MesaGL, implements most (if not all) of
the OpenGL command set. Also, OpenGL has a very low level interface, much
like Xlib is to X-Windows; therefore, higher level toolkits, such as GLUT or aux,
are more appropriate for writing applications. [For more information on
OpenGL/Mesa, see Linux Goes 3D elsewhere in this issue—ED.]

VRML is the Virtual Reality Modeling Language, designed to provide a 3D
interface using a markup language similar to HTML. The current VRML 2.0
specification is based on Silicon Graphics Moving Worlds specification. Only a
few VRML-capable browsers are available; however, there is strong industry
interest in this language, and I expect many browsers will be supporting it in
the near future. A recent report by C|Net cited both Netscape 3.0 and MS
Internet Explorer as supporting VRML to some degree.

Java is not specifically graphics-oriented; its real purpose is to provide a
platform-independent programming language. Java has gained its early
reputation by virtue of a set of graphics applications and toolkits available via
the World Wide Web. My own web pages make use of a scripting language
known as JavaScript (from Netscape).

A number of other programming libraries have been announced on the
comp.os.linux.announce newsgroup:

• SRGP - the Simple Raster Graphics Package, a toolkit for use with
Computer Graphics: Principles and Practice, 2nd Edition, by Foley, van
Dam, Feiner and Hughes.

• lib3d - an X-based 3D rendering library
• EZWGL - a Motif-like widget library that includes some GL support
• YGL - emulates SGI's GL (Graphics Language) under X11

Web Pages

As I mentioned earlier in this article, web browsers support the GIF image
format, and some JPEG; most now support both formats. In choosing one of
these formats, you should consider the following:

• How big is the image in bytes?
• Do you want the outline of the image to be visible or do you want the

background to show through?
• Do you want the image to fade into view while the surrounding text is

displayed, or do you want the image displayed before the text?

The answers to these questions help determine which image format to use.
JPEG will usually compress images without losing too much of the information
and appearance of the image, than GIF. Therefore, if your images take up a lot
of disk space (a problem since my ISP doesn't provide much disk space for
private web pages), or you don't want to force your readers to download large
images, JPEG images would probably be better. However, if your image has a
background you do not want displayed but you do want the background image
or color of the page to show through, you need to use GIF-formatted images, as
JPEG does not provide transparency in images.

If you want your images to fade into view as the text around it is displayed, you
need to use GIF images. This trick is called interlacing, and JPEG does not
support it. If you have large images (not necessarily in bytes, but ones that take
up a lot of screen space), it is more user-friendly to use interlaced GIF images.

Once you've decided on the type of images you'll use, you can start creating
them. There are many tricks and tips, but for starters I suggest you get hold of
the following tools:

• XV
• XPaint
• The GIMP
• PBMPlus/NetPBM

You can use these tools, along with a CD-ROM of images (readily available from
computer software stores) to create your own little web world. When you get
adventurous, you might try adding some complex 3D images using POV-Ray. If
you're interested in using special fonts with the GIMP, I suggest looking for
packages containing Adobe Type 1 fonts. Once you have these you should
check out the typ1inst package, which will allow you to install the fonts for use
with your X server.

The Future

As you can see, there is really too much information about graphics tools to
cover in a single article. Nearly all these tools are still evolving, adding new
features and capabilities through the combined efforts of many people. Tools
based on the more powerful programming languages, such as Java and
OpenGL, are not far off, and it is only a matter of time before commercial
versions begin to appear. Support for live video capture is available for some X
servers and support for hardware accelerations and video capture boards is
forthcoming. I intend to cover all of these in the Linux Graphics mini-HOWTO as
they evolve.

You can do professional graphic art on Linux systems. The tools are available,
the documentation is growing, and the user communities offer a wealth of
information and help. And what's best of all—you can now find the tools you
need using a single reference: The Linux Graphics mini-HOWTO.

Michael J. Hammel (mjhammel@csn.net) is a transient software engineer with a
background in everything from data communications to GUI development to
Interactive Cable systems—all based in Unix. His interests outside of computers
include 5K/10K races, skiing, Thai food and gardening. He suggests if you have
any serious interest in finding out more about him, you visit his Home Pages at
www.csn.net/~mjhammel. You'll find out more there than you really wanted to
know. He also requests that any commercial vendors of graphics systems
contact him, as he'd like to include these in the mini-HOWTO in the future.

Archive Index Issue Table of Contents

mailto:mjhammel@csn.net
http://www.csn.net/~mjhammel
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

OpenGL Programming on Linux

Vincent S. Cojot

Issue #31, November 1996

Use Linux and get good grades? Read on to learn how Linux helped one
student with a major school project.

This article is not intended to be an OpenGL tutorial or introduction. There are
people far more competent in this area than myself, and they have written a
number of articles and even books about this subject. Also, even though the
project discussed in this article was written and built mostly using Xinside's
OpenGL, it is not my intention to discuss the superiority of any of the Linux
OpenGL ports or implementations over another. This article tells a cool story
about using Linux, and I thought it was worth contributing to the Linux
community.

Introduction

“And, thus,” the professor concluded, “Instead of working on perfecting our
home-made ray-tracer—something we have been doing for years—this
semester, we'll start something new. You will have to build a 3D, network-
capable tank game using OpenGL. You'll be in teams of two or three students.
For that, you'll use the RS/6000 workstations we have here, and we'll give you
an introduction to OpenGL.”

My ears! They could not believe what I had just heard. As a student in
Computer Engineering at the Polytechnical School of Montréal and a computer
graphics fan with a good background in ray-tracing, I had been waiting for years
to be advanced enough in my studies to be able to take that course in
advanced computers graphics. That semester I had finally been able to take the
difficult 4th year course, and I had just heard, to my immense disappointment,
that instead of working with a ray-tracer and producing high-quality ray-traced
pictures, I would have to work on OpenGL. My morale was not high, and fear
was making its way along my stomach as I realized I knew a lot less about
OpenGL than about ray-tracing. But as one LinuxDoom aficionado would put it:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

“Armed solely with my Linux Box and my OpenGL Beta product, I plunged into
the hostile mass of GL intrinsics, prepared to fight with every last GLfloat
variable I had.”

What is OpenGL?

More seriously, OpenGL is a graphics library designed from the start as a
hardware-independent interface to be implemented on many different
platforms. It uses a client-server approach, similar to the X client-server
approach, to provide display of graphics primitives on the chosen windowing
system. The server sends commands to the client, and the client displays them.

On X-capable Unix workstations, OpenGL has an extension to the X server
named GLX. You can run your OpenGL program on one computer and display it
on another, but it requires that the server machine has the needed OpenGL
libraries and that the client has the GLX extension. Since those two packages
usually come together, this means that both the server and client must be
“OpenGL-capable”.

In short, OpenGL is capable of displaying simple geometric objects, showing
orthogonal and perspective projections, performing back face removal, doing
shading and anti-aliasing, and applying textures to objects. If you want to do
something complex—like display a car or a plane—you have to build those
objects yourself, and use OpenGL to render them the way you like.

On Linux, to my knowledge, you have the choice of several commercial
implementations and one free implementation:

• Xinside's and Metrolink's OpenGL ports for Linux, each of which requires
that you install its own X server to provide the GLX extension and
generally higher performance.

• Portable Graphics, whose product runs directly on XFree86.
• Brian Paul's Mesa library, which is GPLed and available for free, but has no

GLX extension. It's impressive and affordable.

My personal experience was that the product I was using (Xinside's OpenGL
second beta, and later, the final product, which was even faster) was of very
high quality. It was faster and more compatible than Mesa. Speaking about
commercial applications running on a free operating system is a sensitive and
slippery issue, especially when there are freely available equivalents (Mesa) and
even more so when you happen to find yourself very (or at least more) satisfied
by a commercial tool. I found Mesa to be an impressive piece of software, but
Xinside's OpenGL beta was noticeably faster and more OpenGL-compatible,
since it is a true OpenGL implementation.

Back to a Dearly Loved Linux Box

So, here I was, a few days later, in front of an RS/6000 workstation, writing the
first few lines of code of that soon-to-be tank game and wondering if it was
going to run on my Linux box. You see, I had subscribed to Xinside's OpenGL
beta program a few months before as a means to remotely run OpenInventor
from my Linux box, and thus, I found myself with an OpenGL-capable Linux
computer. Later that same day I went home—while my Linux box was
retrieving the sample code by FTP—and got ready to compile it under Linux.

The project we were building was using a freely available auxiliary library
named libaux. “Fine,” I thought, and I FTPed its source code from the RS/6000
lab and compiled it on my Linux box. It's also available from ftp.sgi.com under
the OpenGL sub-directory, along with all the examples from the OpenGL
programming guide. With a lot of hope and increasing excitment I got ready to
start the sample code and...it crashed, generating a panic file and killing the X
server.

The team later figured that this problem was caused by a small bug in the Beta
OpenGL release I was using which caused it to misbehave when using a color-
indexed color mode and single-buffering. The program, however, ran fine as
soon as I switched to use RGBA (for Red, Green, Blue and Alpha) color mode—it
even ran slightly faster than on the older RS/6000 workstations we were using!

Granted, those RS/6000 were basic entry-level workstations, and their age
(about two years), combined with poor 3D hardware accelerated video cards,
proved they were no real match for my P133 with its Matrox Millennium
(although OpenGL on Linux only provided software 3D acceleration). For
someone who has been used to “This hot stuff runs on workstations—W-o-r-k-
S-t-a-t-i-o-n-s—don't even think about running it on your home PC!” this
OpenGL on Linux experience was like a dream come true.

To Port or Not to Port, That Was No Question

The days went by, and we started incorporating more and more code into the
project. My team-members had more course work than I did, so I found myself
leading the team—writing most of the code in the first part of the project and
all of it in the second and third parts. Of course, I was writing it all on Linux—
but always verifying later that it ran on the RS/6000 workstations (Murphy, you
know?).

Of course, that did not go unnoticed, and some of the students in the class
started exploring ways to build and develop their own projects at home on
their PCs using NT or that OS-with-an-expiration-date-in-its-name (Windows
95). Others followed my advice that it would probably be better to use a Unix

because of portability problems (I thought...er envisioned...er imagined that the
Win32 API could be quite different from that of most Unices) and got Mesa
running. After all, if you have the choice and if you can do the same things you
do at your university at home, would you rather spend nights in a freezing-cold
computer lab with armless wooden chairs or work on your home computer?

Problems started to appear just a few weeks after that when we were required
to implement and use a timer within the game. That was the first blow for the
NT/95 people because, unless you're familiar with the Windows API or have
some sample source code, changing Unix's gettimeofday() to a Windows API call
is not trivial. After all, if your virtual tank is going at 10 m/s, it should do so no
matter what hardware you have, be it a 16 CPU SGI workstation or a poor
80486. Some people got tired of putting #ifdefs and #ifndefs in their code and
decided to spend nights in the lab instead.

Then came the network daemon. The idea (mostly at my suggestion) was that
the game client running on a particular workstation would fork() a daemon at
initialization. The daemon would share one or more memory segments with
the client and would have the task of listening on certain ports for broadcast
messages sent by other possible network players. Needless to say, these Unix
intrinsics marked the end of the Windows port; even if you could run a part of
the 3D engine on Win32, you'd still have to do all the network and final
debugging on the RS/6000 workstations at school.

But during all this time there was at least one happy Linux user who did not
change a single line of code when sending it from his home Linux box to the
Risc workstations. And the only time he actually had to put an #ifdef was when
the endianness difference between the Pentium and the RS/6000 processor
started to show in the byte ordering of the TARGA files he was loading and
using for textures. Rumour even has it that he debugged his network code
without actually entering the computer lab: in the darkest hours of the night he
used two workstations to run his program on and exported the display to his
Linux box (which was slow, but functional enough to track down some bugs).

Performance: Hardware and Software

Speaking about performance in OpenGL is, for those of us who don't use a
middle to high-end SGI workstation at home or at work, about as important as
speaking about OpenGL itself. In our case, around the middle of the semester,
it became obvious to both professors and students alike that the RS/6000
workstations we were using were not fast enough for what we were doing with
them.

Eventually we switched to another lab of RS/6000 workstations which belonged
to the Mechanical Engineering Department. People there ran CATIA—like

AutoCad but with ten times the features and the memory requirements. Those
workstations were still not inherently faster than a good Linux Pentium PC with
enough RAM; most tests, gcc, xv, etc, showed my P133 was about 50-60% faster
doing generic operations. But their hardware-accelerated OpenGL graphics
allowed my game to run on them at 25 frames per second with 512x384 pixels.
By comparison, I was getting a maximum of only 9-10 frames per second with
320x240 pixels on my Linux box, where OpenGL rendering was done by
software alone on the main CPU and FPU.

The program still ran, and it was fast enough to allow me to work out most of
the bugs and implement new features, but I would personally have enjoyed it a
lot more if the Linux OpenGL port I was using had been able to take advantage
of the 3D features on my video card to make my programs run even faster. On
my end, I tried removing as much un-optimized stuff as possible from the
game's main loop to make it run as fast as possible on all platforms.

Here are some stats about the project:

• Lines of code: about 7600 (game and daemon) + 900 (explosions
renderer)

• Number of textures and ray-traced rendered explosions: 34
• Number of different object lists used: 38
• Number of possible network players or automated opponents: 20
• Features only available on Linux: basic sound!
• Time spent pulling our hair out on that game: around 200-250 man-hours

Conclusion

The project, for all the work-teams in our course, is now finished as far as it
involved students working on a programming project whose results professors
would evaluate. I finished the final “product” pretty much alone and about a
week before all the other teams. In the end, our game client probably had the
greatest number of features, the most complex graphics, the nicest explosions
and the most reliable motion engine—and we got the highest marks possible
on the final evaluation by the professors. Somehow, I think that if I had not
been able to run everything on my home Linux machine, and do everything
when I wanted it and how I wanted it, I probably would not have reached this
level of achievement.

Other than showing that some Computer Engineering students are definitely
more productive on their home machines than on most computers you can
give them access to, this somewhat extraordinary adventure shows that some
fields—which, until now, were reserved for high-end workstations—can be

explored with something as simple as a good Linux box and some relevant
software.

Future Directions

UPDATE: 11/29/2006

If you want to see the pictures and code relating ot this article go to this link:
www.step.polymtl.ca/~coyote/graphics_tank.html

Vincent Cojot is a student in Computer Engineering at the Polytechnical School
Of Montréal. He enjoys Computer Graphics, Xview/OL programming (under
Linux, of course) and miniatures painting.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.step.polymtl.ca/~coyote/graphics_tank.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Java Developer's Kit

Arman Danesh

Issue #31, November 1996

Are you an absolute beginner? Here's a brief introduction to using the JDK.

Java has taken the Internet and programming communities by storm during the
past year with its promise to enable the creation of software that can run on
any platform from a single binary file and be used securely in a distributed
network environment.

The Java concept is simple: a single source code file is compiled to a single
pseudo-binary file containing Java byte codes. This binary file can be run on any
platform for which a Java interpreter or other runtime engine exists.

In order to develop and test these Java applications, it is necessary to have
access to several critical development tools, including a compiler, a debugger
and a Java interpreter for testing applications. Numerous Java development
environments already exist—primarily for MS-Windows systems. These full
professional development tools are produced by the likes of Borland and
Symantec. For Linux, and Unix in general, this type of commercial development
tool hasn't become available.

Nonetheless, this doesn't mean that Linux users are unable to develop Java
applets and applications. Sun Microsystems has developed a free Java
Developer's Kit (JDK) which includes a compiler, a debugger, a runtime
environment and an applet viewer for testing Java applets embedded in web
pages.

Obtaining the JDK

The Java Developer's Kit was originally developed by Sun for SPARC, Solaris and
Windows NT/95. These versions of the kit, along with more recent versions for
x86 Solaris and MacOS, are available from the JavaSoft web site at http://
www.javasoft.com/

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.javasoft.com
http://www.javasoft.com

Sun has also allowed other organizations to port the JDK to other platforms.
The Blackdown Organization (Randy Chapman) has ported version 1.0.1 of the
JDK to Linux and makes binaries available for x86 versions of Linux. The JDK
distribution for Linux is available from ftp://ftp.blackdown.org/pub/Java/linux/.
Blackdown also has a web page at www.blackdown.org/. On the web site you
will find three files:

linux.jdk-1.0.1-try3.common.tar.gz
linux.jdk-1.0.1-try3.static-motif-bin.tar.gz
linux.jdk-1.0.1-try3.shared-motif-bin.tar.gz

It is necessary to download two of these three files:

linux.jdk-1.0.1-try3.common.tar.gz

plus either:

linux.jdk-1.0.1-try3.static-motif-bin.tar.gz

or:

linux.jdk-1.0.1-try3.shared-motif-bin.tar.gz

The last file requires an ELF binary of version 2.0 of the Motif libraries (libXm.so.
2). If you don't have Motif, download linux.jdk-1.0.1-try3.static-motif-bin.tar.gz
instead—it is a larger file but will work regardless of whether you have the
Motif libraries or not. Throughout this article we will be using linux.jdk-1.0.1-
try3.static-motif-bin.tar.gz.

All versions of the Java Developer's Kit also require the following libraries, many
of which may already be on your system:

• /lib/libc.so.5.2.16
• /usr/X11/lib/libX11.so.6.0
• /usr/X11/lib/libXt.so.6.0
• /usr/X11/lib/libXext.so.6.0
• /usr/X11/lib/libXpm.so.4.3
• /lib/libdl.so.1.7.9

If you are missing any of these libraries, the JDK will not work. These libraries
are all freely available on the Internet.

Installing the JDK

Once the “common” tar file and one of the Motif tars have been downloaded,
they need to be uncompressed. The documentation with the Linux JDK
recommends installing the JDK in the /usr/local directory (although it can be

http://www.blackdown.org/

installed elsewhere). To do this, copy the two compressed tar files to /usr/local
with:

cp linux.jdk-1.0.1-try3.common.tar.gz /usr/local
cp
linux.jdk-1.0.1-try3.static-motif-bin.taR.GZ
/usr/local

Then, the files can be uncompressed and untarred with:

tar xzvf linux.jdk-1.0.1-try3.common.tar.gz
linux.jdk-1.0.1-try3.static-motif-bin.tar.gz

This will create a directory java/ under /usr/local which contains four
subdirectories: bin, demo, include and lib. /usr/local/java will also contain a zip
file with the source and various README and HOWTO files. The bin/ directory
contains the scripts used to execute all the components of the JDK. The
components are:

• appletviewer: A viewer to test applets embedded in HTML documents.
• javac: The Java compiler: compiles Java source code to Java byte code

binary files (known as class files). The class files produced by javac can be
run by a Java interpreter on any platform.

• java: The Java interpreter: used to execute Java class files under Linux.
• jdb: The Java Debugger: a command-line debugger which is in alpha

development.

Each of these scripts in java/bin actually call executable files in java/bin/i586.
These scripts expect certain tools to exist in fixed locations in your system.
Specifically, the appletviewer script expects mkdir to be in /usr/bin and pwd to
be in /bin. On some systems, this may not be true (for instance, in RedHat-
derived systems, you may find mkdir in /bin). There are two solutions to this
problem. One is to edit java/bin/appletviewer and replace the incorrect
occurrences of /usr/bin/mkdir or /bin/pwd with the correct full paths of these
programs.

The second solution is to create symbolic links in the directories expected by
appletviewer. For instance, on RedHat systems where mkdir is in /bin, a
symbolic link could be created in /usr/bin with the command:

ln -s /bin/mkdir /usr/bin/mkdir

If you expect to be using the JDK components frequently, you will probably
want to add the java/bin directory to your path. Assuming you installed the JDK
under /usr/local and you are running the bash shell (the default shell for many
Linux distributions), you could add the following lines to the .bashrc file in your
home directory:

PATH=/usr/local/java/bin:$PATH
export PATH

If you are running C shell, the following line at the end of your .cshrc file in your
home directory will do the job:

setenv PATH /usr/local/java/bin:$PATH

Using the JDK

Although the details of programming and developing Java applications and
applets are beyond the scope of this article, we will briefly cover how to go
about compiling and running Java applications and applets. Java source code is
saved in files with the .java extension. Once compiled, a class file (with a .class
extension) will be created. Assuming the java/bin directory is in your path as
outlined above, a Java source file can be compiled with:

javac filename.java

Class files for applications can be executed using:

java filename.class

Applets are a little more complicated. Applets are run as embedded pieces of
web pages and are included in web pages with a special <APPLET> tag. You can
test an embedded applet with appletviewer or Netscape Navigator 2.0 or 3.0.
With Navigator, simply choose Open from the File menu and then open the
HTML file with the embedded applet.

With appletviewer, simply type:

 appletviewer filename.html

Running applets as well as some Java applications requires that you are
working in an X-Windows environment. If you don't have X-Windows installed
on your system you won't be able to test applets or any applications which
make use of Java's GUI development capabilities.

Troubleshooting Your Installation

On most Linux systems the steps outlined above should be all that is required
to get the JDK up and running. However, on some systems you may experience

some difficulty; some of the common errors and their solutions are outlined
below:

• You get an error message referring to /dev/zero. The device /dev/zero
needs to have world read and write permissions. Set these permissions
using:

 chmod 666 /dev/zero

• You get “dirname: too many arguments” or “cannot find class” errors. The
component you are trying to run cannot find the native Java class files.
The JDK uses the environment variable CLASSPATH to find these files. This
variable is set in java/bin/.java_wrapper and java/bin/appletviewer.
However, with your shell, these scripts are having trouble determining the
correct directory. You can edit these files so that the CLASSPATH gets set
correctly.

In .java_wrapper, change the line which reads:

 J_HOME=`dirname $PRG`/..

to

 J_HOME=/usr/local/java

(or wherever you installed the JDK) A similar change needs to be made in
appletviewer.

Getting More Information

Once you have installed the Java Developer's Kit, you will probably want more
information about developing Java applications and applets. Aside from Sun's
official Java home page at http://www.javasoft.com/, the Gamelan directory
(http://www.gamelan.com/) provides an extensive collection of applets and
applications—many with source code—as well as pointers to other reference
material. The comp.lang.java newsgroup is a high-volume newsgroup which is
actively used by many Java experts and novice programmers.

Arman Danesh (armand@juxta.com) is a technology journalist who contributes
regularly to several publications around the world. He writes a weekly Internet
column in The South China Morning Post called “The Other World” and a
regular column called “Trawling the Net” in The Dataphile. He is the author of
Teach Yourself JavaScript in a Week from Sams.net Publishing.

Archive Index Issue Table of Contents

 Advanced search

http://www.javasoft.com
http://www.gamelan.com
mailto:armand@juxta.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

LJ Interviews Larry Gritz

Amy Wood

Issue #31, November 1996

A Techmical Director of Toy Story gives us the scoop from Pixar Studios.

Amy Wood, the graphics/layout artist for Linux Journal interviewed Larry Gritz
of Pixar Animation Studios on August 16.

AmyI understand that you were a Technical Director for the latest great
animation feature film, Toy Story. Can you tell us what you did in that role?

LarryI was one of 30 or so technical directors (TDs) who worked on that film. TD
is the job title for people who create the models, write shaders and light the
shots. Essentially, they are technical folks responsible for the visual look of the
film. Another group, the animators—typically with classical animation rather
than technical backgrounds—is responsible for the motion or acting of the
characters. There are also countless other people writing the story, designing
the look, painting, developing software and so on. In all, it's quite a big team of
incredibly talented people. I came into the project fairly late in the production,
after modeling was mostly done, but I got to work on shaders and lighting.

What is your background? How did you get involved with graphics?

I started out interested mainly in compilers, but I took a course in computer
graphics when I was an undergraduate at Cornell, and I've been hooked ever
since. I started tinkering around with writing renderers, and concentrated on
graphics in graduate school at George Washington University, doing my MS
thesis about a new way of calculating a particular kind of light propagation. I
stayed for a PhD (which I am still in the process of wrapping up), doing more
research in animation techniques, among other things.

Can you tell us about your Blue Moon Rendering Tools software?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

BMRT is a high quality renderer which supports ray tracing and radiosity, area
lights, volumetric effects and other advanced features. It runs on several Unix
platforms, including SGI, Sun, HP, NEXTSTEP, and of course, Linux. It's cheap
shareware, and is free for academic and non-commercial usage. Features that
set it apart from most other renderers include support of curved high level
surfaces such as bicubic patches and trimmed NURBS, good anti-aliasing
support and programmable shading (users can write little programs called
“shaders” which control the appearances of surfaces and lights). These features
aren't found in many renderers (including big commercial packages), but they
are essential to high-end, professional quality rendering.

BMRT is fully compliant with the RenderMan Interface Specification, developed
by Pixar. RenderMan is a standard way for modelers to talk to renderers, sort
of like PostScript, but for describing 3-D photo-realistic scenes. By being
RenderMan compliant, BMRT is largely compatible with Pixar's PhotoRealistic
RenderMan product (PRMan, for short), which is probably the most commonly
used renderer for feature film effects work (and of course, was used to render
Toy Story).

BMRT is not particularly easy to use; it's really more of a developer's product.
But it's extremely powerful—much more so than any of the other free
renderers out on the net, which are more oriented toward hobbyists.

The BMRT home page, www.seas.gwu.edu/student/gritz/bmrt.html, has several
pictures that have been rendered using my software.

Why did you pick Linux as a platform for Blue Moon?

A couple of years ago, I was introduced to Linux by Youngser Park, a fellow
graduate student at GWU. He asked me to port BMRT to Linux so that he and
other students could run the renderer (as well as our other lab tools) at home. I
remember the first time I was at his place and saw Linux running on his
computer. I'd heard of Linux before, but never imagined that it could be a
robust implementation. When I saw X11 running and realized how easy it was
to set up an environment just like I was used to on the SGI, I knew I needed to
be running it on my home machine, as well.

What are some interesting projects where the BMRT have been/are used? Is
BMRT a popular package? Do you know of any studios that use it running under
Linux?

BMRT is fairly popular in the high end. It's rather hard for beginners to use, so it
doesn't come close to say, POV-Ray, in terms of the number of people who use
it. But because it's so powerful, and RenderMan compliant, it's gotten noticed

http://www.seas.gwu.edu/student/gritz/bmrt.html

by a lot of production houses. Judging by the mail I receive, several well-known
studios have at least tried it out. Pixar's renderer is much faster, and is less
prone to some very subtle artifacts, so no studios would want to use my
software instead of PRMan. But since the algorithms are very different, many
houses use them together—PRMan for the bulk of the work, and BMRT for
those pesky scenes when they just have to have ray tracing or area lights or
something. I can't name the studios, but I know BMRT has been used for a
couple TV commercials and for an episode of Star Trek: Voyager. I don't think
it's been used for final frames of any feature films yet, but I wouldn't be
surprised if that happened soon.

I don't know any studios currently using Linux “officially”, but many people who
work at production houses run Linux at home and like to be able to continue to
tinker with shaders and such.

How do you think Linux compares to other platforms?

I think it's a more robust Unix-like OS than many I've seen from the big
commercial workstation vendors. I also like the spirit of community and the
kind of high-quality, low cost software that is available for Linux. I've tried to
contribute to that with the availability of my software for Linux.

Do you think your decision to offer a commercial graphical/rendering tool for
Linux will inspire others to make more packages available?

I hope so. With high end Intel chips being a very cost-effective way to get lots of
computational power, I wouldn't be surprised to see studios using large farms
of Intel-based hardware for their rendering or other graphics tasks. If this is the
case, I'd much rather see these machines running Linux than NT.

And in the vein of Barbara Walters, if you had to be one character in Toy Story,
who would you be?

Probably Sid, though perhaps without the sadistic streak. I like the tinkerer in
him. He has sort of a God complex, but he sure does make interesting toys.

Note that RenderMan is a registered trademark of Pixar, and Toy Story is
registered and copyrighted by Walt Disney Corporation. The RenderMan

Companion by Steve Upstill (Addison-Wesley, 1990) is a good reference for
more information about the RenderMan standard.

Larry Gritz (lg@pixar.com) is a Technical Director for Pixar Animation Studios in
Richmond, California. He holds an MS in Computer Science from George

mailto:lg@pixar.com

Washington University. Visit him on the web at http://www.seas.gwu.edu/
student/gritz/, and check out his Blue Moon software.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.seas.gwu.edu/student/gritz
http://www.seas.gwu.edu/student/gritz
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux-GGI Project

Andreas Beck

Steffen Seeger

Issue #31, November 1996

The Linux-CGI Project goals are explained—what it intends to accomplish and
how it will do it.

Introduction

In this article, we will explain the intentions and goals of the Linux-GGI Project
along with the basic concepts used by the GGI programmers to allow fast, easy
to use access to graphical services, hide hardware level issues from
applications and introduce extensible support for multiple displays under
Linux. The Linux-GGI project wants to set up a General Graphical Interface for
Linux that will allow easy use of graphical hardware and input facilities under
the Linux OS. Already existing solutions and standards like X or OpenGL do deal
with graphic's issues, but these current implementations under Linux have
several (sometimes serious) drawbacks:

• Console switching is not deadlock-free, because the kernel asks a user-
mode application to permit the switch causing a problem in terms of
security. Since any user-mode application can lock the console, the kernel
has to rely on the application to allow a user-invoked switch. For stand-
alone machines, if the console locks in an application without a switch, a
system reboot will have to be done.

• The Secure Attention Key (SAK), which kills all processes associated to the
current virtual console might help with the above problem, but for
graphics applications the machine might still remain locked, because the
kernel has no way to do a proper reset of the console—after all, it has no
idea which video hardware is present.

• Any application accessing graphical hardware at a low level has to be
trusted as it needs to be run by root to gain access to the graphical
hardware. The kernel relies on the application to restore the hardware

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

state when a console switch is initiated. Relying on the application might
be okay for an X server that needs superuser rights for other reasons, but
most of us would not want to trust a game that is available to us only in
binary form.

• Input hardware (such as a mouse or a joystick) can be accessed using the
current approach, but it can't easily be shared between several virtual
consoles and the applications using it.

• No clean way is available to use more than one keyboard and monitor
combination. You might think that this is not possible on PC hardware
anyway; but in fact, with currently existing hardware there are ways to
have multi-headed PCs, and the USB peripheral bus to be introduced soon
may allow for multiple keyboards, etc. Besides, other architectures do
support multiple displays, and if Linux did also, it would be a good reason
to use Linux for applications like CAD/CAE technology.

• Games cannot use the existing hardware at maximum performance,
because they either have to use X, which introduces a big overhead (from
a game programmer's point of view), and/or access the hardware directly,
which requires separate drivers for every type of hardware they run on.

GGI addresses all these points and several more in a clean and extensible way.
(GGI does not wish to be a substitute for these existing standards nor does it
want to implement its graphical services completely inside the kernel.) Now,
let's have a look at the concepts of GGI—some of which have already been
implemented and have shown their usability.

Video Hardware Driver

The GGI hardware driver consists of a kernel space module called Kernel
Graphical Interface (KGI) and a user space library called libGGI. The KGI part of
GGI will consist of a display manager that takes care of accessing multiple video
cards and does MMU-supported page flipping on older hardware. This method
allows for incredibly fast access to the frame buffer from user space whenever
possible. (This technique has already been proven—the GO32 graphics library
for DJPGG, the GNU-C-compiler for DOS, uses this method and has
astonishingly fast graphical support on older hardware.) If this memory-
mapped access method can be used in GGI, there will be no loss in
performance as the application reads or writes the pixel buffer directly.

Each type of video card in the system has its own driver, a simple loadable
module that registers as many displays as the card can address. (Video cards
exist that support two monitors or a monitor and a TV screen.) The driver
module gives the system the information needed to access the frame buffer
and to access special accelerated features, the setup of a certain video mode
and the limits of the hardware (e.g., the graphic card, the monitor, and any

other part of the display system). The module can either be obtained from a
single source file or be linked using precompiled subdrivers for each graphical
hardware subsystem (ramdac, monitor, clock chip, chipset, accelerator engine).
This last option is the favourite approach, since it allows support for new cards
to be added quite easily, as only the subdrivers for hardware not already
supported need to be implemented and tested. (The others are already in use
or bug fixes there will improve all drivers using them.) This scheme has been
used to derive support for many of the S3 accelerator-based cards, and has
proved to be very efficient and easy to use. It also allows for efficient
simultaneous development for several graphic cards. The subdrivers to be
linked together are now selected at configuration time, but they can also be
selected after automatic detection or according to a database (not yet built).
Note that the subdrivers do not need to be in source form; as a result,
precompiled subdriver object files can be linked together during installation.

As each subdriver knows the hardware exactly, it can prevent the display
hardware from being damaged due to a bad configuration and make
suggestions about the optimal use of the hardware. For example, the current
implementation has drivers for fixed- and multisync monitors that allow
optimal timings for any resolution to be calculated on the fly without any
further configuration. Of course, completely user- configurable drivers are also
possible. In short, in addition to the hardware level code, the subsystem drivers
provide as much information about the hardware as possible. This way the
kernel will have sufficient methods to initialize the card, to reset consoles and
video modes when an application gets terminated, and to make optimal use of
the hardware. The KGI manager will allow a single kernel image to support GGI
on all hardware, as any hardware-specific code is in the loadable module and
only common services (such as memory mapping code) are provided from the
kernel. The KGI manager will also provide data structures and support to
almost any imaginable kind of input devices.

The user space library, called libGGI, will implement an abstract programming
interface to applications. It interfaces to the kernel part using special device
files and standard file operations. Applications should use this interface (or APIs
provided by applications based on it) to gain maximum performance; however,
other APIs can be built accessing the special files directly. Understand that in
this case the X server will just be a normal application in terms of graphic
access. Since X is considered to be the main customer for graphical services,
the API will be designed according to the X protocol definition and will
implement a set of low level drawing routines required by X servers. The library
will use accelerated functions whenever possible and emulate features not
efficiently supported by the hardware found. An important feature of future
generation graphical hardware is 3D acceleration which easily fits into the GGI
point of view. We plan to provide support for 3D features based on MESA,

which is close to OpenGL and ensures compatibility with other platforms than
Linux.

Another issue when dealing with graphics is game programming as games
need the highest possible performance. They also need special support by the
video hardware to produce flicker-free animation or realistic images. The
current approaches can't support this need in a reasonable way, since they
cannot get help from the kernel (e.g., to use retrace interrupts). GGI can provide
this support easily and give maximum hardware support to all applications.

Input Hardware Driver

There are many ways to interact with computers—a keyboard, a mouse, even a
cybersuit. All of these methods have special protocols to report user actions
and even need special hardware to be accessed. GGI will allow any kind of input
to be supported without recompiling the kernel for each new device, thus
allowing for flexibility and easy configuration. This support is achieved by
having a loadable module for each device or device class. Just like the video
card drivers, any input device driver will register abstract input devices that
convert user actions to events.

For example, an application might query for the registered devices and select
the events it wants to receive, so that a game program could default to use
joysticks or keyboard input depending on the environment. Installing a game or
an X server will not require any further configuration other than copying the
binary to its destination directory and starting it. Please note that this
methodology will also considerably reduce the effort required to maintain
several differently-equipped machines as the application binaries will be the
same for all machines and can be shared via network file systems. Only the GGI
modules to be loaded will differ from machine to machine.

A New Way of Understanding Consoles

GGI defines a console as a pair—a display and a (mandatory) character input
device. Optionally, other input facilities like a pointing device or controllers
attached to a console may be present. The display is capable of providing
alphanumeric data or graphics while the character device provides character
input (just as the name implies). We use these diffuse terms as the display
actually might be something other than a monitor, e.g., braille lines or other
devices that help disabled or handicapped people to work with computers.
Similarly, the input might be a keyboard or a voice recognition program or
hardware—just about anything you can imagine. However, the character input
device is mandatory, because it focuses on one and only one virtual console
that is shown on one of the displays registered by the loaded modules. Any
other devices are associated with one of the keyboards, and any user activity is

reported to applications running on the focused console. Thus, it is not only
possible to have multiple virtual consoles but also (in conjunction with multiple
displays) to have several real consoles.

If the user wants to switch between two virtual consoles, the keyboard driver
will tell the KGI manager to bring the specified virtual console on the display
assigned to it and then report any keyboard, pointer and controller events to
the application. One problem arising from the virtualization is that an
application accessing accelerated features might first have to terminate the
current command or that the frame buffer needs to be preserved even if the
application goes into background mode. GGI will effectively hide this operation
from the application. Applications can be placed into one of the following
categories with examples given:

• The application can redraw its screen without noticeable overhead at any
given time, e.g., X server.

• The application can be programmed considerably more easily when a
back-up buffer is provided in case the frame buffer needs to be accessible
at any time, e.g., a ray tracer or any other program that needs to do a lot
of calculations to draw an image. This back-up would also allow running
the application in background mode while continuing to draw to its frame
buffer.

• The application can skip output or simply sleep, if not in foreground
mode, thereby reducing system load significantly, e.g., games or software
video decoders. SVGALIB works in this manner.

Class one and three are easy to virtualize—they just have to redraw their
buffers when switched to foreground mode, and therefore, when switching to
background mode, the screen contents are discarded and drawing requests are
ignored. The only difficult class is class two. However, since the kernel knows
the exact state of the hardware, it can tell a user space daemon to allocate
sufficient memory, save the frame buffer there, redirect the memory mapping
of the application and tell the library to use optimized drawing methods for
memory- mapped buffers instead of accelerated drawing functions.

GGI plans to add powerful graphical hardware support to the Linux operating
system. As with any hardware driver, it needs to have a kernel segment that is
kept to a minimum (currently the modules are about 30K in size, and should
not become greater than 80K). If accepted by the Linux community, GGI can
provide a clean method of dealing with multiple display and input hardware as
well as an architecture-independent programming interface that will give good
performance on any platform. Also, it will allow hardware manufacturers to
provide optimized drivers for their hardware if they wish. During development
much care has been and will continue to be taken to isolate machine or

hardware-dependent code, whenever possible, in order to provide good
portability.

Sidebar: Linux-GGI Project Resources

As GGI is still under development, several features are not yet implemented,
but there is a first implementation that demonstrates that our concepts are
capable of providing easy access to video hardware and solving all of the points
addressed in this article. Currently being worked on is support for multiple
displays and libGGI. Of course, introducing a new concept to the kernel to
access video hardware will cause several (non-X) applications to be
incompatible, but on the other hand, adding this concept will ease the
configuration of Linux, and open up new vistas to game programmers with an
operating system and graphical support that will allow maximum performance
on any system.

Andreas Beck (becka@sunserver1.rz.uni-duesseldorf.de) studies physics at the
University of Duesseldorf, Germany and started the GGI project. He developed
the memory mapping code for GGI, worked on the library implementation and
made major contributions to the concepts used.

Steffen Seeger (seeger@physik.tu-chemnitz.de) also studies physics at the
University of Technology at Chemnitz-Zwickau. He wrote most of the S3 driver
code and made major contributions to the console concepts and the kernel
drivers.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/031/0160s1.html
mailto:becka@sunserver1.rz.uni-duesseldorf.de
mailto:seeger@physik.tu-chemnitz.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Java and Postgres95

Bill Binko

Issue #31, November 1996

First in a series of articles detailing the creation of a Java interface to
Postgres95.

Java's native methods are functions written in C (or another compiled language)
and dynamically loaded by the Java interpreter at run time. They provide the
means to access libraries that have not been ported to Java, and also allow fast
compiled code to be inserted at critical points in your system.

In this article, we will walk through the complete process of writing native code.
We will create a Java interface to Postgres95 by writing wrapper classes around
the libpq library. Postgres95 is a free database system (licensed under the GPL)
that runs on most varieties of Unix, including Linux

While written (and tested) solely on Linux, the principles of this article should
apply to any version of Unix and (with the exception of how to build the shared
library) the code should be easily ported. To get the most out of this article, you
should have some Java experience, or be very familiar with C++ and OO
principles.

An Introduction to Java

Recently, Java has received a great deal of attention (and quite a bit of hype) as
a fantastic WWW tool. “Java Powered” pages with animations and interactive
interfaces have popped up all over the Web, and everyone, including Microsoft
(gasp!), is clamoring to add Java capabilities to their browsers. What many
people don't realize is that Java is much more than that: it is a complete
programming language suitable for use in standalone and, in particular, client-
server applications.

Java offers several features that make it ideal for an application language. First
among these is obviously portability. With Java there is no need to write

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Windows95, Mac, and several Unix versions of your application. Since the code
is run by the Java Virtual Machine (VM), all that is necessary is that the VM (and
any native libraries you want to use) be ported to that platform.

Another compelling reason to write in Java is the depth of its libraries
(“packages” in Java-speak): networking, I/O, containers, and a complete
windowing system are all integrated. Many of these capabilities are “crippled”
when running a Java applet, but applications are free to make complete use of
all of them. Java is a multi-threaded environment, allowing safe use of threads
on platforms that don't currently support them natively. Java has a garbage
collection system that eliminates the need for explicit freeing of memory.
Exception handling is built in (and its use is actually required by many of the
libraries, including the one we will write), and its true OO nature eases
inheritance and re-use.

Sidebar: Class Repositories: the Motivation behind Jgres

Interfacing Java with Existing Systems

Even with all these things going for it, using Java for an application still has one
major drawback: many systems don't yet have a Java interface, and writing
them from scratch is often difficult, or even impossible.

This is the problem I faced when I wanted to access a Postgres95 database
from Java. There was an excellent (and simple) C library (libpq) that shipped
with Postgres95, but no support whatsoever for Java. Since the source (in this
case) was available, I considered recreating libpq under Java, but this proved to
be a substantial chore, and required intimate knowledge of Postgres internals.
(In fact, as of this writing, John Kelly of the Blackdown Organization is writing
just such a beast. It's called the Java-Postgres95 project, and you can find an
alpha version at ftp://java.blackdown.org/pub/Java.

Then I decided to simply write wrapper classes for libpq. There are several
drawbacks to this approach: First, it cannot be used in an applet. Browsers
explicitly disallow any access to native code (except those provided with the
browser), so these classes simply will not work. Second (and more importantly),
this solution is not as portable as one written in straight Java. While libpq is
portable to all major flavors of Unix, and the code we'll write will be as well,
there is currently no libpq for Windows95/NT or the Mac.

Apart from being simpler, there is one other advantage to writing this in native
code: When the Postgres95 project releases bug fixes or changes their
communication protocol, little or no change will be required to our code.

Sidebar: How to get Postgres and Java

https://secure2.linuxjournal.com/ljarchive/LJ/031/5535s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535s2.html

The Battle Plan

We will proceed in three steps, providing examples of how to use each part
along the way.

First, we'll create wrappers for libpq's PGconn, and PGResult. This will allow us
to connect to the database, issue queries, and process the results.

Then, we'll write a new interface to Postgres95's Large Objects (or blobs in
other databases), using Java's Stream classes.

Finally, we'll use Java's threads to provide an easy, behind the scenes interface
to Postgres95's asynchronous notification system.

Using Native Methods in Java

Java methods (class functions) that have been declared “native” allow
programmers to access code in a shared library. Theoretically, this code can be
written in any language that will “link with C” (but in general, you'll probably
want to stick to C, or perhaps C++).

When a Java class is loaded, it can explicitly tell the Java system to load any
shared library (.sos in Linux) into the system. Java uses the environment
variable LD_LIBRARY_PATH (and ldconfig) to search for the library, and will then
use that library to resolve any methods that have been declared “native”.

The general procedure for writing native code is as follows:

• Write the .java file, declaring all native methods as “native” (The .java file
must compile cleanly at this point, so insert dummy methods if you need
to)

• Add the loadLibrary() command to your .java files to tell Java to load the
shared library

• Compile the class:
 javac [-g] classname.java

• Generate the headers and stubs:
 javah classname (no extension)

 javah -stubs classname

• Use the declarations in the classname.h file to write your C code (I use the
file classnameNative.c, as it seems popular, and the stubs file uses
classname.c)

• Compile the .c files using the -fPIC (position independent) flag:
gcc -c -fPIC -I/usr/local/java/include
filename.c

• Generate the shared lib (these flags are for gcc 2.7.0):
gcc -shared -Wl,-soname,libFOO.so.1 -o
libFOO.so.1.0 *.o -lotherlib

• Put the .so file somewhere in your LD_LIBRARY_PATH (or add it to /etc/
ld.so.conf).

An Example: The PGConnection Class

The PGConnection class is a wrapper for libpq's PGconn. A PGconn represents
a connection to the backend Postgres95 process, and all operations on the
database go through that connection. Each PGConnection will create a PGconn
and keep a pointer to it for future use.

Let's walk through the steps above:

First, we write our PGConnection.java file (Listing 1). Remember that it must
compile cleanly in order to generate our header and stubs, so if you refer to
any Java methods that you haven't written, create dummy methods for them.
We will need a constructor, a finalizer, and all of the operations that libpq
allows on a PGconn. We declare most of these operations as native methods
(see Listing 1—exec() and getline() are special cases that we'll consider later).

Listing 1. PGConnection.java

The PGConnection Constructor

To get a PGconn, libpq provides the function:

PGConn *setDB(char *host, char *port, char *options, char *tty,
char *dbName)

Since this in effect “constructs” the connection to the database, we'll use this as
a model for our constructor (See Listing 1, line 18). The constructor simply calls
connectDB() (Listing 1, line 21; a native method that calls setdb()—we'll define it
in a moment), and throws an exception if the connection is not made. Doing
the error checking in the constructor guarantees that no connection will be
returned if the call to setdb () fails.

Now let's look at our first native method, connectDB(). We declare it as native at
line 70 in Listing 1. Note that no Java code is provided.

There are several important things to notice about this declaration. The
“private” keyword makes this method accessible only from the PGConnection
class itself (we want only our constructor calling it). The “native” keyword tells
Java that code from a shared library should be loaded for this method at
runtime. Since libpq is not “thread-save”, we want to make it impossible for two

https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l1.html

threads to be making calls to libpq at the same time. Making all of our native
methods “synchronized” goes a long way towards this goal (we will return to
this when we tackle the asynchronous notification system). Finally (Listing 1,
lines 70-73), the declaration states that connectDB() takes five Java strings as
arguments and doesn't return anything.

Figure 1. How Types Convert to and from Java and C

The remainder of the native calls follow this same pattern, with the exception
of exec() and getline(). Again, we'll put these off a little longer.

Before we continue, let's add the loadLibrary call. We place it at the end of the
class, in a block marked “static” (Listing 1, line 92) with no method name. Any
blocks such as this are executed when the class is loaded (exactly once) and
libraries that have already been loaded will not be duplicated. In our example,
we'll name the library libJgres.so.1.0, so we need to use loadLibrary (“Jgres”)
(See Listing 1, line 94).

With our .java file complete, we are ready to write the C code. First, we compile
the .java file with:

javac PGConnection.java

Then, we create the “stubs” file and the .h file with:

javah PGConnection
javah -stubs PGConnection

At this point you should have PGConnection.h and PGConnection.c in your
current directory. PGConnection.c is the “stubs” file, and should not be
modified. For our purposes, the only thing you must do to the stubs file is to
compile it and link it into your shared library.

PGConnection.h is a header file that must be included in any C file that
accesses PGConnection objects. At line 14 (see Listing 2) you will find the
declaration of a struct corresponding to the data for our object. Below that you
will find prototypes for all of the native methods we declared. When writing the
C code for native methods, you must match these signatures exactly. Listing 2.
PGConnectionNative.c (includes PGConnection.h)

Now, let's (finally) write the C code.

The code for connectDB is very straightforward, and demonstrates the majority
of the issues involved in writing native code. Notice that the first argument to
connectDB is not listed in the PGConnection.java file. Java automatically passes
a “handle” (a fancy pointer) to the object you are dealing with as the first

https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l2.html

parameter of every native method. In our case, this is a pointer to a struct
HPGConnection (defined in PGConnection.h), which we name “this” (Listing 2,
line 14. If you're working in C++, you may want to use “self” since “this” is a
keyword). Any access to the object's data must go through this handle.

The remainder of the parameters are the Strings we passed in (see
PGConnection.java). These are also passed as handles, or pointers to the struct
Hjava_lang_String (defined in java_lang_string.h, included by native.h). We could
access these structures like any other handles (see below), but Java provides
several convenient functions that make it much easier to work with strings.

The most useful of these functions are makeCString and makeJavaString. These
convert Java's Strings to char *s and vice versa, which use Java's garbage
collector to handle memory allocation and recovery automatically. (

Beware of a major pitfall here!

You must store the value returned by makeCString in a variable. If you pass the
return value directly to a function, the garbage collector may free it at any time.
The same is not true of makeJavaString.) Lines 30-34 in Listing 2 show the use
of makeCString and we use makeJavaString first at line 51. Lines 41-42 in Listing
2 show our call into the libpq library. It is called exactly as normal, and the
resulting pointer is stored in the variable tmpConn. You may notice that we
don't do any error-checking here: we do that in the Java code for our
constructor, where it is easier to throw exceptions.

As I mentioned above, PGConnection needs to keep the PGconn pointer
around, so that it can use it in later calls—all later calls, in fact. In order to do
this, we will store the 32 bit pointer in a data member with Java type int after
casting it to a C long to avoid warnings (see Table 1 for a list of type
conversions).

To access this member, we must use Java's “handles”. Handles are used to
access data in a Java object. When you want to access a data member, you
simply use unhand(ptr)->member rather than ptr->member (where ptr is the
handle). We do this on line 42 of PGConnectionNative.c (Listing 2) to save the
pointer returned by setDB in a Java int (note: if you forget the unhand() macro,
you will get a warning about incompatible pointer types).

This function has covered almost all you need to know to call C functions from
Java (calling Java methods from C is possible, but the interface is clumsy at best
at this point, and where possible, I'd avoid it). Most of the rest of the methods
(host, options, port, etc.) simply convert the data and make the C call. We'll just
take a look at one of these, PGConnection.db().

https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l2.html

The only significant portion of the C function PGConnection_db() is its first line
(Listing 2, line 46). It needs a PGconn to pass to PQdb(), so it must get it out of
the PGConnection member, PGconnRep. It uses cw[unhand() to get the pointer
as a long, then casts that to a (PGconn *). Since this line is so messy (and is
starting to look like lisp!) I created a macro, thisPGconn, to clean up the code a
little. It is used in the remainder of the file, and its definition is at the top of the
file (don't put it in PGConnection.h, since that is machine-generated).

All of the native methods in the Java class PGResult follow the same basic
structure, and there is no reason to go over them.

Jumping through Some Hoops

There are some places where Java and C just don't get along. The rest of this
section will touch on the few I found, and how I avoided them.

Hoop #1: Returning Java Objects (exec() Explained)

The exec() method (see, I told you I'd get to it) needs to return a PGResult
object. This is in keeping with libpq's structure, and the OO nature of Java.
However, returning an object from a native method can get pretty hairy. The
“official” way to do it is to call the function:

HObject *execute_java_constructor(ExecEnv *,
 char *classname,
 ClassClass *cb,
 char *signature, ...);

and return the HObject * it returns. Personally, I find this interface extremely
clumsy, and have managed to avoid it. However, for completeness, the actual
call in our case would be:

return execute_java_constructor(EE(), "classPGResult",
 0, "(I)LclassPGResult;",
(long)tmpResult);

I found it far easier to create a buffer between the call to exec() and the call to
PQexec() that could call the constructor from Java. This is where the
nativeExec() method comes from. exec() simply passes the string to
nativeExec(), which returns an int (the PGresult pointer that PQexec() returned).
Then it calls PGResult's constructor with that int.

The extra layer will also come in handy when we add the asynchronous
notification system.

Hoop #2: Append to Strings in Java, not C (getline() Explained)

PQgetline() expects the user to continually call it while it fills in a static buffer.
This is simply not needed in Java. A much nicer interface is to just have getline()

return a String. However, building the String (appending each return value from
PQgetline()) required calling Java methods from C—which, as we saw in Hoop
#1, is very messy. By using a StringBuffer (a String that can grow) and doing the
work in the Java code, it's much easier to understand, if a little slower.

The flip side of this is that the return value is now the String, so there must be
another way to tell if an error has occurred or an EOF has been reached. One
solution (I'm looking for a better one), and the one we use, is to set a data
member flag. If the flag has been set to EOF, we simply return a Java null String.
So once again, an extra layer saves us from a lot of truly gross code!

Hoop #3: You Can't Get a Stream's FILE*; (trace() and formatTuples() Explained)

This is one hoop I think the JavaSoft team should've solved for us. There is
simply no way to get a FILE * (or a file descriptor) from a FileStream. PQtrace()

expects a FILE *, so we simply open one, based on a filename passed in by the
user. We check to see if it's “stdout” or “stderr”, and act accordingly.

We see the problem again when we try to implement Postgres95's printTuples

(or displayTuples for 1.1). It also expects a FILE*, but this time the solution is a
little messier. Here, we want the output in a String, so we open a temporary file,
send it to the libpq function, rewind it, read it, and close it. This is pretty messy,
but it does work, and is actually pretty quick about it. If we wanted to write a
cleaner version, we could certainly rewrite displayTuples() completely in Java
code, using PGResult's native methods fname() and getValue() that we have
already defined.

The Finish Line

:

After writing all the C code, we are ready to generate our shared library.

First, we have to compile the .c files:

gcc -O2 -fPIC -I/usr/local/java/include/ \
 -I/usr/local/java/include/solaris \
 -c PGConnectionNative.c
gcc ... (repeat for each .c file)

Then we link them:

gcc -shared -Wl,-soname,libJgres.so.1
-o libJgres.so.1.0 *.o -lpq

The -lpq tells the dynamic loader to load libpq.so when Java loads this library.

And finally, put them somewhere the dynamic loader can find them (in your
LD_LIBRARY_PATH, or in a standard location (i.e. /usr/local/lib) and rerun /sbin/
ldconfig -v).

That's all there is to it. Now we can use PGConnection and PGResult just like
any other Java classes.

A Simple libJgres Example

To finish up this section, let's use our new classes to implement a simple SQL
client. The client will connect to a database “foo” and accept query strings from
standard input. PGConnection.exec() will process the queries, and print the
results to the terminal using formatTuples(). The connection to the database is
made on line 17 in Listing 3 (QueryTest.java).

We use the libpq convention of sending NULL (the empty Java string ""

translates into a NULL char *) for any parameters we don't know. Notice that
the call to PGConnection's constructor is surrounded by a “try” block. If an
exception is thrown within this block, we have a problem with the connection
and exit nicely (lines 54-58, Listing 3).

At line 24 of Listing 3, we test some of the simple functions to print out
information about what we're connected to. We then read a query string and
quit if it is “q” or “Q”.

We process the query on line 33 of Listing 3, by calling exec(). Note that we nest
another “try” block here, because if we get a PostgresException on an exec(), we
want to simply print the error and continue (we handle the exception on lines
43-46). If we reach line 34, we know that the PGResult is valid. We check to see
if it returned any tuples, and use formatTuples() to print them if it did. If not, we
simply print the current status and continue.

Conclusion

In this segment, we've shown how to create simple Java wrappers for C library
functions. In the next installment, we'll show how to use Java's Streams to wrap
Postgres95's Large Objects, and finally, we'll create a multi-threaded interface
to its Asynchronous Notification system.

Charles “Bill” Binko graduated from the University of Florida with a BS in
Computer Engineering in 1994. Currently a software engineer in Atlanta, GA, he
has been a Linux enthusiast since 1993. His main computer interests are in

https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/5535l3.html

simulation, genetic algorithms and distributed programming, and he finds Java
an excellent platform for all of these.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #31, November 1996

Readers sound off.

Several readers asked Linux Journal about the registered trademark symbol
after Linux, in particular after noting the R[registered] symbol after Linux on
IDG Books' Linux Secrets, written by Naba Barkakati. The book's cover says:
“Linux is a registered trademark of William R. Della Croce, Jr.” Is there really a
registered trademark on the word Linux?

Funny You Should Ask...

IDG Books Worldwide, Inc. told Linux Journal they did a trademark search as
they always do when deciding what to put on a book cover, and although
surprised to find a registered trademark on Linux, they printed the information
resulting from their search. Their intent was in no way to reinforce the
registered mark, but to comply with trademark requirements.

In July 1996, we at LJ tried to contact the person who had filed for the
trademark, Mr. William R. Della Croce, Jr., via phone and left a message giving
our e-mail address and telephone number. Mr. Croce responded by e-mail with
a brief note, stating that “LINUX” was proprietary to him and that we would be
hearing from his attorney.

We e-mailed Linus Torvalds about the matter. Linus reiterated his
determination that Linux remain in common use or be trademarked by some
trustworthy organization or individual.

We investigated the trademark, which was filed for August 15, 1994 and
registered September 5, 1995, with a first use date of August 2, 1994. Since this
date is long after others have used the term “Linux”, it seemed there were
ample grounds for protesting this trademark and we began gearing up to do
so.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

In August 1996, Linux Journal and other Linux companies reported that they
had received letters from Mr. Croce informing them that:

LINUX ® is proprietary. Information about obtaining
approval for use and/or making payment for past use
may be obtained by writing to the following address:...

Yggdrasil Computing filed for a trademark on their book title Linux Bible in
March 1995. Their trademark was turned down because Linux was already a
trade name registered to Mr. Croce. In March 1996, Yggdrasil Computing filed a
letter disputing Croce's trademark and showing that Linux was a generic term
and that Yggdrasil's use was prior to Croce's in any event. By the time you read
this, we may know the results of this action. Other companies and individuals
are getting involved in the trademark issue as well, and we will try to keep you
informed.

Check our web site at http://www.ssc.com/lj/ for the latest update on the Linux
trademark.

—Belinda FrazierAssociate Publisher

X-cellent Resource

In your September issue's Letters to the Editor Ethan Wellman wrote that he
had problems with X. So have I, and so it seems, have a lot of people. Your reply
was appropriate, but would have been more helpful if you had suggested he
contact the XFree people at http://www.XFree86.org/.

—John Palsedge jpalsed@uswest.com

More Coverage of Various Platforms

I am an experimental physicist and much of the work I do involves data analysis
and simulations on computers. I have recently begun using Linux on my home
PC and on a PC at work and I have really become a big fan of Linux. However,
much of my “real” work is still done on commercial workstations (with
commercial OSs) from DEC and SUN. It appears to me that Linux could
definitely become a low cost alternative to these workstations.

There are two things I would really be interested in seeing in Linux Journal:

• Some kind of comparison of Linux on various platforms to commercial
workstations, i.e. benchmarks, software and hardware availability, etc.

• Comparison of Linux on Intel Pentium, Pentium Pro and on the DEC alpha
chips. Now that several commercial vendors are advertising systems that

mailto:jpalsed@uswest.com

run Linux on alpha chips in your journal, I think it would be very useful to
people interested in buying these to have an idea of the pros and cons of
Linux/alpha vs. Linux/Intel.

I have been very impressed with the (VMS) alpha machines in our lab and I am
seriously considering the purchase of an Linux/alpha system.

—Frank Moore moore@pyvsfm.physics.ncsu.edu

Coming Up in LJ...

We agree with your observations, and The May 1997 issue of Linux Journal will
focus on the various platforms available for Linux.

Korn Shell Bin for Free

The July 96 issue of LJ presents the new Korn shell (ksh93). What is not
mentioned (and is not widely known) is that users who are not interested in
commercial support can get Linux, Sun and other binaries for free (src is not
available). This includes not only the ksh binary but also shared libraries and
the Tksh extension for Tcl/Tk. Just check the URL http://www.research.att.com/
orgs/ssr/book/reuse.

—Alexandre avs@daimi.aau.dk

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:moore@pyvsfm.physics.ncsu.edu
mailto:avs@daimi.aau.dk
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Is This Any Way to Run a Railroad?

Phil Hughes

Issue #31, November 1996

We take the tag line on the cover (“The Monthly Magazine of the Linux
Community”) seriously.

While I have never run a railroad, I am guessing that publishing a magazine is
like running a railroad. You have an assortment of diverse customer needs, you
have a limited budget, and you need to offer the best possible service to
everyone.

But the parallel goes beyond that. In the railroad business you can make up
your train out of an assortment of different cars, and based on the number of
cars and the terrain you must travel through, you can pick the number of
engines to pull it. As publisher of LJ, I get to pick the article mix, pick the
number of pages, and pick who receives the magazine. If I do my job right, LJ
gets more customers, which gets it more revenue—revenue from advertisers as
well as readers—and everyone benefits.

All that said, I want to tell you what has changed at LJ, why it has changed and
what you will see in the future. And, for our old customers, I want to assure you
that you will continue to get the service you expect.

We take the tag line on the cover (“The Monthly Magazine of the Linux
Community”) seriously. I fought for this before Issue 1 was published, and I
continue to fight to make sure we stay on track. Today, however, that
community is changing and we need to respond to those changes. While there
is still a large Linux development community, there are other easily-identifiable
“communities” needing a reliable source of Linux information. Here are a few:

• Applications developers
• ISPs
• Linux (and Unix) novices

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Web developers
• Embedded systems builders

Let's take one example, web developers, and see why it is important that we
give them the information they need. Linux is an ideal platform for developing
web content and Linux systems make ideal web servers. But web developers
have choices. When someone says, “Why should I use Linux instead of NT for
my web server?” we need to have a good answer. Being able to point at books
like CGI Programming in C & Perl, by Thomas Boutell, a Linux user himself,
helps. Being able to show the person that a monthly magazine called Linux
Journal will answer ongoing questions, offer sources for essential hardware and
software, and generally offer needed support is another important part of the
answer.

What's Changing?

Linux Gazette

The first major change is that we are taking over the Linux Gazette. For those of
you not familiar with it, LG is a newsletter. LG has offered an assortment of
quick tips and articles that, while useful, have appealed to a smaller segment of
the Linux community. We have always considered their work to be
complementary to ours.

John Fisk, the creator of the Gazette, has run out of time to produce it and we
struck a deal whereby LG can continue as a vendor-independent source of
information. Its new home will be http://www.ssc.com/lg/, and its new editor
will be Marjorie Richardson. She can be reached at info@linuxjournal.com.

In addition, a new editor and a new home, there will be other changes to the
Gazette. While we will continue to offer an on-line version, we intend to include
part of the Gazette in the pages of Linux Journal. We will offer the information
we consider of the greatest interest, and pointers to additional on-line
information.

Novice-to-Novice

The way our community grows is by getting new people up to speed. We used
to have a novice column. It just sort of faded away. We knew it was needed and
with the introduction of “Novice-to-Novice”, we've done something about it.
John Fisk is writing some articles for the series, as well as at least one other
author. You can suggest new topics by sending e-mail to info@linuxjournal.com
or by writing to us.

mailto:info@linuxjournal.com
mailto:info@linuxjournal.com

Tech Answers

When each new Linux distribution comes out there is a flood of new questions.
We have started a tech answers column where vendors and consultants will
answer the common questions that arise. If you have a question, you can send
it to info@linuxjournal.com, mail it in or fill out a form on our web page.

More product reviews

The most common question for a beginner is: “What should I buy?” For
someone who has been working with Linux for some time, this is a common
question as well—the query is just more likely to be about an ISDN board or
scanner than a Linux distribution. We are encouraging vendors to send us
products to review and hope to keep up with the new product releases so we
can help you make product selections.

More pages

Finally, we are producing a larger magazine. That means we will have more
space for the new columns and more reviews. What makes this possible is
more income. We are growing as fast as we can right now, but we need you to
do your part. Buy your boss a subscription. Tell a fellow Linux user about us.
And when you buy something for Linux tell the vendor that you found out
about him in Linux Journal. That's the way it all happens.

And more

We have other changes in the works as well. Watch for information on them in
the December issue, or watch for news flashes on our web site. With your help
we can continue to be the Linux resource you need as well as a tool that helps
show others that Linux has become a real part of the computing industry.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Keyboards, Consoles, and VT Cruising

John M. Fisk

Issue #31, November 1996

There are times when the command line interface is still a very good choice for
getting things done.

“It's a GUI, GUI, GUI, GUI world!”—or so the major OS manufacturers would
have you believe. The truth is that while this is increasingly the case, there are
times when the command line interface (CLI) is still a very good choice for
getting things done. It's fast, generally efficient, and is a good choice on
memory or CPU constrained machines. And don't forget, there are still a lot of
very nifty things that can be done at the console.

In this spirit, I'd like to start by following up on a delightful and informative
article written by Alessandro Rubini entitled “The Best Without X” in the
November 1995 issue (#19) of Linux Journal. Among a wealth of helpful ideas,
Alessandro suggested converting the numeric keypad into a console-switch
scratch pad to allow single key switching from one virtual terminal (VT) to
another. We'll begin by looking at how this conversion can be done. We'll also
look at:

• Getting from Here to There: handy methods for VT cruising
• The Useful Unused VT: where to put all that logging information, and

where X-Windows really ends up

By the time that you get through tinkering around with these things I think
you'll agree that the CLI isn't such a bad place after all. Also, the good news is
that the programs you'll need to do this conversion are standard inclusions in
most recent Linux distributions and include:

• kbd 0.91 (keyboard font and utility programs)
• utils 2.5 (Rick Faith's huge collection of utilities)
• GNU shell-utils 1.12 (shell utilities including the stty program)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

A listing of Linux FTP archives where these utilities can be found is included in
the sidebar.

The Keypad VT-Switcher

The numeric keypad is an ideal candidate for re-mapping into a virtual
terminal-switching scratch pad since most of us have never learned “ten-key by
touch”. In addition, the non-numeric functions on a 101-key keyboard are
already duplicated by the home, end, page up, page down, insert, delete and
arrow keys. Since there may be occasions in which we still want to use the
keypad for numeric input, let's see how to set it up as a VT switcher while
retaining numeric input ability. You'll need to have the kbd package installed on
your system. The two programs we'll be using are showkey and loadkey. To
check whether they are installed on your system type:

$ type loadkeys showkey

if you're using the BASH shell, or:

$ which loadkeys showkey

The which program or the BASH shell built-in function type will both print the
path to the executable if they exist in the PATH search path. On my machine
this produces:

$ type showkey loadkeys
showkey is /usr/bin/showkey
loadkeys is /usr/bin/loadkeys

$ which showkey loadkeys
/usr/bin/showkey
/usr/bin/loadkeys

If you don't have these programs installed, you'll need to get the the kbd
package source, and install it yourself. This package is available only as source
code, but installation is as simple as un-archiving it into a temporary directory,
then typing:

$make && make install

Converting the keypad into a VT switcher involves defining a keyboard mapping
and using loadkeys to actually load this information into the kernel keyboard
translation tables. It's easier than it sounds—although you must keep in mind
that indiscriminate tinkering can render your keyboard useless (requiring one
of those dreaded cold reboots), and that changing the keyboard translation
tables affects ALL VTs, not just the one you're working on. The kbd package's
default installation location is under /usr/lib/kbd, with the key mapping files in
the keytables subdirectory. Change to this directory and make a copy of the

https://secure2.linuxjournal.com/ljarchive/LJ/031/0187s1.html

defkeymap.map file, which contains the default keyboard mapping and is a
useful place to begin. You can name the new file anything you'd like—e.g.,

cp defkeymap.map custom.map

Use your favorite editor and load up the copied file. At this point it's probably
helpful to have a look around at the current contents. The experience is rather
like visiting one of those fine old curio shops—look, but don't touch! The first
few lines may look something like this:

keycode 1 = Escape Escape
 alt keycode 1 = Meta_Escape
keycode 2 = one exclam
 alt keycode 2 = Meta_one
 shift alt keycode 2 = Meta_exclam
keycode 3 = two at at
 control keycode 3 = nul
 shift control keycode 3 = nul
 alt keycode 3 = Meta_two
 shift alt keycode 3 = Meta_at

I won't go into all the gory details of how to re-map the keyboard except to say
that the basic format to use is:

keycode keynumber = keysym
 modifier keycode keynumber = keysym

in which keynumber is the internal identification number of the key and keysym
represents the action to take. Now, before you bail out on me, let's put this into
simple terms. Each key on the keyboard is identified by a unique number which
is represented by keynumber. When a key is pressed or released, the press or
release event is passed to the operating system, which responds by performing
the appropriate action—represented here by keysym. The modifier is a key
which is held down at the same time that the key is pressed. These modifier
keys include the well-known control, alt and shift keys. The ability to define
multi-key combinations extends the mapping available for each key.

So, using the example above, pressing the key associated with keynumber 3
actually causes the number 2 to be printed to the screen. If the shift key is held
down at the same time as the key is pressed, the @ sign is printed to the
screen, and if the three key combination shift-alt-3 is pressed, the output is the
Meta_at (whatever that looks like).

Getting back to the task at hand, we want to change to a specified VT when we
press one of the keypad keys: i.e., pressing keypad 1 should switch to VT
number 1, pressing keypad 2 should switch to VT number 2, etc. In your
customized key map file find the section that defines the keypad keys—it
should look similar to this:

keycode 71 = KP_7
 alt keycode 71 = Ascii_7
keycode 72 = KP_8
 alt keycode 72 = Ascii_8
keycode 73 = KP_9
 alt keycode 73 = Ascii_9
[...]

Now, edit this section so that it reads something like Listing 1.

Before continuing, let's make a couple of observations. First, it's not a bad idea
to comment the file as you go. What seems clear and obvious now fades into
obscurity as the weeks pass. Adding comments now will prevent your having to
pore over manual pages, program documentation and magazine articles later,
looking for the correct syntax or usage. Second, notice that with each entry
there are sub-stanzas, beginning with the words alt keycode, shift keycode, etc.
These stanzas define multi-key combinations in which a modifier key is pressed
at the same time as the key being defined. A common example of this is the
crtl-c combination used to terminate a program during execution.

Finally, you may be asking yourself how you're supposed to know which
keynumber is associated with a key. Does anyone know off-hand what
keynumber goes with the ; key? You can find this out by using the showkey
program. After you invoke the program, showkey will print the keynumber for
any key you press and will quit after 10 seconds of no input. So, now that we've
edited the pertinent section in the custom.map file, let's see how we'd arrive at
this from scratch. The basic steps would be:

• Find the keynumber for the keypad keys.
• Edit the customized mapping for the keys so that pressing them would

change to the appropriate VT.
• Edit the customized mapping for the keys so that the keypad could still be

used for numeric input (using a modifier key combination in this case).
• Load the customized mapping and see whether it works.
• Optionally, have the default key mapping loaded at system boot.

To do this, let's begin by invoking the showkey program:

$ showkey

Now, any key you press causes showkey to print the keynumber. On my
machine, invoking showkey and pressing keypad keys 1 through 9 results in the
output shown in Listing 2. You can see that both key press and key release
events are detected. Also note that the numbering of the keypad keys is not
sequential. The numeric keys have the format shown in Table 1:

Table 1

https://secure2.linuxjournal.com/ljarchive/LJ/031/0187l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0187l2.html

Actual Key: Keynumber:
7 8 9 71 72 73
4 5 6 75 76 77
1 2 3 79 80 81

Table 1 shows that keypad number 1 has keynumber 79, keypad number 2 has
keynumber 80, etc, Knowing this, we can set up the appropriate key map entry
for each of these keys. The keysym event that we're interested in is Console_x,
in which x is the number of the VT to which the view is switched. A simple entry
to map keypad number 1 to switching to VT 1 would look like:

keycode 79 = Console_1

If you look at Listing 1, you'll notice that this is what we've done. Suppose,
however, we wanted to switch to a VT greater than 9—how are we to do that?
The solution is to use a modifier key combination. Looking again at the example
above, using the shift key with the keypad allows us to use Console_10 through
Console_19. We also wanted to be able to use the numeric keypad as just that
—a means of entering numeric data. In the example above, notice that the
modifier alt was used to do this:

keycode 71 = Console_7
 shift keycode 71 = Console_17
 alt keycode 71 = KP_7
 alt control keycode 71 = Console_7

In this stanza for the keypad_7 key, the first entry maps the keypad_7 key to
switch to VT 7. The second line maps shift-keypad_7 to switch to VT 17 and the
third line maps the alt-keypad_7 combination to KP_7 which is the keysym for
numeric output when num lock is on. Thus, to use the keypad as a numeric
keypad, press the num lock key so that it toggles to on, then hold down the alt
key while you enter numbers at the keypad. Note, too, that alt-crtl-keypad was
defined to switch to the same console as simply pressing the keypad key itself.
In this case, it acts in exactly the same fashion as the alt-fn (alt-Function_key) or
alt-crtl-fn (alt-crtl-Function key) combination. You may have noticed that using
the function keys is how one is typically instructed to switch from one VT to
another. Looking at the stanzas for the function keys you'll notice entries such
as the following:

keycode 59 = F1 F13 Console_13
 control keycode 59 = F25
 shift control keycode 59 = F37
 alt keycode 59 = Console_1
 control alt keycode 59 = Console_1

Note that both alt-f1 and alt-crtl-f1 are used to switch to VT 1. Those of you
using X will probably already have found that switching to a VT from X requires
the three key alt-crtl-fn key combination while the two key alt-fn key
combination is used at the console. Although you can change this default
behavior, it's best not to. At this point, we've defined mappings for the keypad

https://secure2.linuxjournal.com/ljarchive/LJ/031/0187l1.html

keys such that each key acts as a switch to the VT of the same number. Using
shift-keypad_key switches to VT (10 + keypad number) and using alt-keypad key
with the num lock on outputs the numeric value of the key. The final step is to
actually load the new mapping and give it a try. The loading is done using
loadkeys and can be done without logging on as root. To load the customized
keymap, enter:

$ loadkeys /usr/lib/kbd/keytables/custom.map

This will print a message indicating that the custom.map file is being loaded.
After this, you're all set! Give it a try. To revert back to the default mapping
simply enter:

$ loadkeys /usr/lib/kbd/keytables/defkeymap.map

and the default mappings will be loaded once again. You can use this edit ->
load customized map -> test -> load default map cycle to obtain the desired
mapping. Once you've created a custom map file and wish to have it loaded at
boot, you can add an entry to one of the rc.* files, such as rc.local, to have
loadkeys automatically load your customized mapping:

if [-r /usr/lib/kbd/keytables/custom.map]; then
 loadkeys /usr/lib/kbd/keytables/custom.map
fi

This entry ensures that the file is present and readable and invokes loadkeys to
load the file. Again, keep in mind that loading a key mapping changes the
keytable information for all VTs, not just your current one.

Getting from Here to There

Now that we're on a bit of a roll, let's look at another method for moving from
one VT to another. The utility of being able to quickly switch from one VT to
another should be obvious: you can be compiling a program on VT 1, editing a
file on VT 2, reading program documentation on VT 3 and having a manual
page displayed on VT 4. Now that you've re-mapped the keypad, switching from
one VT to the next is as simple as pressing the keypad keys. But there are other
handy means of getting around as well and these include:

• Using the keysym functions Last_Console, Incr_Console and Decr_Console
• Using the chvt program (which is part of the kbd package)

The Incr_Console and Decr_Console keysym functionsdo as their names imply:
they switch to (VT + 1) or (VT - 1) respectively. So, if you were currently working
at VT 3, the Incr_Console keysym would switch you to VT 4 while the
Decr_Console keysym would switch you to VT 2. The Last_Console keysym also
does as its name implies: it switches to the last VT used. If you were working at

VT 3 and switched to VT 6, the Last_Console keysym would switch you back to
VT 3. You can map a key or modifier+key combination to invoke any of these
keysym functions. I've mapped these functions as follows:

Ctrl+left arrow = Decr_Console
Ctrl+right arrow = Incr_Console
keypad 0 = Last_Console

Obviously, you can map these functions in any manner you wish, but the
relevant entries to map the above actions would be:

#keycode 82 = KP_0
keycode 82 = Last_Console
 shift keycode 82 = Console_10
 alt keycode 82 = KP_0
[...]
keycode 105 = Left
 alt keycode 105 = Decr_Console
keycode 106 = Right
 alt keycode 106 = Incr_Console

These entries map the keypad 0 key to the Last_Console keysym and the alt-
[left arrow] or [right arrow] to Decr_Console or Incr_Console keysyms. The good
news is that these last two are already the default so that you have to edit only
the stanza for the keypad 0 key. Now, you can quickly cycle through all the VTs
by holding down the alt key and repeatedly pressing the left or right arrow. To
alternate between two VTs you have only to repeatedly press the keypad 0 key.
I've found these particular mappings to be quite useful but, as I mentioned
before, they can be customized to anything you wish. The last bit of VT cruising
magic is the chvt program included with the kbd package. Its use is quite
simple:

$ chvt 3

would change to VT 3. Substituting another number for 3 allows you to change
to that VT. A foreshortened version of this can be set up using a shell alias:

$ alias vt='chvt'

so that entering:

$ vt 3

would switch you to VT 3.

So, now that we've defined several methods of getting from VT to VT it is
important to note that this works only at the console and not under the X
Window System. Under X, the X server takes control of the keyboard, mouse,
and display: setting up customized keyboard mappings is performed using the
~/.Xmodmap file or the program xkeycaps and is a subject for a later article.

The Useful Unused VT

Having the capacity to open multiple VTs and to have programs running on
them in the foreground or background is one of the things that makes running
Linux such a huge amount of fun. As the old Surgery Prof used to harangue his
interns, “Help me, help me! If I had another set of hands I'd help myself!” Linux
gives you that extra “set of hands”. Generally, most VTs, to be useful, must have
a getty process running on them in order to log in. A getty is a program
associated with a terminal that:

• Opens the tty line and sets its mode.
• Prints the login prompt and gets the user's name.
• Initiates the login process for the user.

Without going into all the details (again, a subject for a later article), suffice it to
say that this program is set up in the /etc/inittab file. An entry for a getty might
look like Listing 3.

The important thing to note in this listing is that the agetty program is run on
each of the tty devices from tty1 to tty6. Thus, at system startup there are a
total of six gettys running, allowing you to log into VT 1 through 6. So what
about VT 7 and beyond? Are they still usable in any way? If you've re-mapped
your keyboard—try pressing keypad_7—alternatively, press alt-f7—and see
what happens. In general, the screen is blank with the cursor positioned at the
upper left corner. You can type at the keyboard, and the output is displayed on
the screen. Despite this, there is no way to execute programs at this terminal. A
terminal you can't log in on isn't much use. There are, however, two important
exceptions to this statement.

So Where Did X Go?

The first exception to note is that when the X Window System starts, it is
displayed on the first unused tty—one that doesn't have a getty running on it.
Since the first six ttys had gettys running on them, X would, in the example
above, start on tty 7. Now we know the solution to the great riddle, “So where is
X ?”, when you switch from X to a console. Pressing crtl-alt-f1 in X would switch
you to VT 1. If you wanted to get back to X, simply:

• press keypad_0 if you've mapped this to the Last_Console keysym.
• press keypad_7 to switch to VT 7 on which X is running.
• press alt-f7 to switch to VT 7.

https://secure2.linuxjournal.com/ljarchive/LJ/031/0187l3.html

Putting That Unused VT to Work

The other exception to note is that while you can't run programs on a VT
without logging in, you can still send output there. As a simple experiment try
the following:

$ echo "This is a test" > /dev/tty7

Switching to VT 7, you'll see the words “This is a test” displayed. This ability
becomes useful with system logging. Without going into an exhaustive
discussion of system logging and configuration, it is worth noting that the
output of all logging facilities can be “dumped” to an unused VT which allows
quick perusal for events such as logins, kernel messages, mail logging, etc. To
do this simply add the following line to the /etc/syslog.conf file (after logging in
as root):

this one will log ALL messages to the
#/dev/tty9 terminal since this is an unused
terminal at the moment. This way, we
don't need to hang a getty on it or take up
a lot of system resources.
. /dev/tty9

Once you've added this stanza to /etc/syslog.conf, you'll need to either kill and
restart the syslog daemon or else send it the HUP (hang up) signal. Since this
latter method is fairly easy let's do it:

$ ps -x | grep syslog
28 ? S 0:01 /usr/sbin/syslogd

will output the PID (process ID number) of the syslog daemon which in this case
is 28. Now, just type in:

$ kill -HUP 28

in which 28 is the PID number. The syslog daemon will re-read its initialization
files. From here on, all logging that occurs, regardless of its source, will be
output to tty9 (or whichever tty device you specify).

Switching to VT 9 you might see something like the following:

Jul 1 10:11:37 FiskHaus kernel: Max size:342694 Log zone size:2048
Jul 1 10:11:38 FiskHaus kernel: First datazone:68 Root inode number 139264
Jul 1 10:11:38 FiskHaus kernel: ISO9660 Extensions: RRIP_1991A
Jul 1 12:21:50 FiskHaus login: ROOT LOGIN ON tty2
Jul 1 17:26:56 FiskHaus login: 1 LOGIN FAILURE ON tty5, fiskjm

The first three lines represent kernel messages that occur when a CD is
mounted. Root logins are noted by the login program as well as login failures—
in this last case I purposely entered an incorrect password.

The value of all of this logging may not be immediately evident, but if you've
ever noticed your machine thrashing about and swapping like crazy, or, while
on-line, your hard drive lights begin to light up when you're not doing anything
—a quick switch to VT 9 can often give you an idea about what's going on.
These instructions should get you started. The manual pages for loadkeys,
showkey and keytables have much more complete technical descriptions of key
mapping. Also, the kbd package comes with a good deal of helpful
documentation in its /doc subdirectory. And finally, don't forget the Keyboard-
HOWTO which can be found among the growing number of Linux HOWTOs
http://www.ssc.com/linux/howto.html).

John Fisk (fiskjm@ctrvax.vanderbilt.edu) After three years as a General Surgery
resident and Research Fellow at the Vanderbilt University Medical Center, he
decided to “hang up the stethoscope” and pursue a career in Medical
Information Management. He's currently a full time student at the Middle
Tennessee State University and working on a graduate degree in Computer
Science before entering a Medical Informatics Fellowship. In his dwindling free
time, he and his wife Faith enjoy hiking and camping in Tennessee's beautiful
Great Smoky Mountains. An avid Linux fan since his first Slackware 2.0.0
installation a year and a half ago

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:fiskjm@ctrvax.vanderbilt.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Debian 1.1

Phil Hughes

Jonathan Gross

Issue #31, November 1996

The Debian packaging system makes it possible to do add, remove and
upgrade automatically.

With Linux 2.0 out, commercial vendors are offering new products based on the
2.0 kernel. We want to keep everyone up to date, so we will be reviewing the
various distributions. An updated chart (based on the one that appeared in
Issue 29 of LJ) and new descriptive text will be made available on the Linux
Journal web page at http://www.ssc.com/lj/distable.html.

by Phil Hughes and Jonathan Gross

The first distribution made available with the 2.0 kernel was Debian, and thus it
is the first we will review. We would like to thank iConnect for making the CD
available to us. iConnect's web page is located at http://www.i-connect.net/i-
connect/services/cdrom.html.

Some Background...

From the Debian FAQ:

Debian GNU/Linux is the result of a volunteer effort to
create a free, high-quality Unix-compatible operating
system, complete with a suite of applications. The idea
of a free Unix-like system originates from the GNU
project, and many of the applications that make
Debian GNU/Linux so useful were developed by the
GNU project. Debian was created by Ian Murdock in
1993, initially under the sponsorship of the Free
Software Foundation's GNU project. Today, Debian's
developers think of it as a direct descendent of the
GNU project.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/031/0172f1.html

Installing Debian

Enter. Enter. Enter. Enter. Enter. Enter. You could pretty much train a chicken to
install Debian: “Peck the enter key. Wait....okay, peck enter again...wait...okay,
now peck enter...” I had time to think about this as I was installing Debian for
the first time on an old 386 with no math co-processor. By the time I had
installed it on my P60, I had an entire training session for my chickens, with
plans to take over entire networks. (“Now it's upgrade time! Select FTP from the
Access menu and peck enter....now peck enter again...”)

Debian installation begins with a set of floppies. I needed six: a base system
spans three of them, a root, a boot and a sixth to make a backup boot disk.

The base system is installed, and from there, you go through the package
selection process.

I've installed a fair number of Linux distributions, built a couple from scratch
(no chicken pun intended) and bollixed up more than one installation—
Slackware, Red Hat, SLS (shudder) and others. I've noticed that one of the
things I do that causes problems is deciding to not install package foobar. It's
big, I don't like the package name, the version number is 13, so I don't install it.
Then I run Idependonfoobar, and it complains, “...can't find library libfoobar.”
Phooey. So I waste a lot of time only to discover that the packages I left out
contain files that other programs depend on.

Debian solves this problem for me, or at least warns me that I am making a
mistake. Debian's package dependencies are very, very cool, and will be
discussed at length.

Installation was self-explanatory until I came to the package selection screens,
where I stumbled a bit, forging ahead without any documentation. I found I had
to rethink my chicken training regime. The selection process reminds me of
reading mail with trn: there are a couple of different screens that do different
things, and a slew of keyboard controls for doing them. Is this part of the cost
of having dependencies? I don't know, but I think that part could have been
clearer. Once you figure out how things work, it is very helpful, but it is certainly
not intuitive, like the rest of the installation.

For example: I decided not to install Tex. It's big, and I would rather have used
that disk space for my large collection of gifs. So I left Tex unselected. Later, I
chose apsfilter, a print filter that needs dvips to work its magic. Debian's
package selection tool, dselect, told me that apsfilter depends, among other
things, on dvips. That's cool. But even cooler is the fact that all these
dependencies are presented in a list form that allows me to select packages

from the list during the install, solving the dependency problems as they arise
and without losing my place in the installation. Very cool.

Another example: I initially chose the Debian default mail transfer agent, smail,
but then decided I really wanted sendmail in all its glory. I went back into
dselect, and selected sendmail.

dselect complained that smail conflicted with sendmail, but I ignored it and
tried to install it anyway. deselect wouldn't do it because of the conflicts with
smail. You may consider it a blessing or a curse when software makes decisions
like this for you. I admit it was slightly irritating that deselect wouldn't let me
hang myself. Nevertheless, this sort of thing prevents damage to innocent
hardware when people cannot get their new systems to work because of
software conflicts and heave the machines out windows.

When I went back and heeded the warning messages, deselected (dselected?)
smail, and tried again, smail was removed, and sendmail was installed and
configured. During installation, you are prompted to configure sendmail to
send mail to a hub, or run as a host. This option is nice for people who have
simple mail needs.

Another of the best features of this distribution is the upgrade method—truly
the most impressive feature of Debian. After you have the system basics
installed and running, you can fire up dselect and do upgrades to your system.
If you are connected to the Internet, you can do this via FTP. dselect allows you
to select where you are getting your new packages—so you point it at
ftp.debian.org. The upgrade acts just like the installation, the system updates
the packages database, and gets all the newest packages from the FTP site, and
continues with the install.

No more guessing which parts of the distribution you need to upgrade to run
the new version of foobar—you just point dselect at the Debian FTP site and let
the system worry about it—this is what computers are for—keeping track of all
the “this package depends on this stuff, and you'll need to get the new version
of blah-blah-blah.” Debian does all that for you—very impressive.

Debian allows you to install (and update) from CD-ROM, NFS, hard drive,
previously mounted partition, floppy, or via FTP. I installed from the CD-ROM
obtained from iConnect.

However, there are problems with the system. Apparently the installation
procedure doesn't install LILO correctly. Unless you run LILO by hand before
rebooting, it won't re-boot from the hard drive at all, even if you told the
installation scripts that was what you wanted. Also, the modules do not load

into the kernel. All these problems need to be dealt with before Debian is ready
for the Big Time.

I also tried to get and install the kernel sources for 2.0.6 (the latest package as
of this writing). The kernel building procedure is a little different for Debian
than for other distributions, and I still don't have it working properly. The kernel
builds, then some scripts run to make sure that if you upgrade your kernel
packages, you don't overwrite your custom kernel configuration. These scripts
don't seem to work correctly—the kernel building procedure aborted and I had
to finish it manually, which is not a big deal if you know what you are doing. But
these bugs are not trivial and should be fixed (and may be, by the time this
article is printed).

More on the Debian Packaging System

The Debian packaging system makes it possible to do add, remove and
upgrade automatically. You may have noticed that I said “makes it possible”,
not that it always works. If the package is properly constructed, it will automate
all these tasks for you. But it's up to the person or vendor building the package
to ensure it works. The scripts in the package are also very important to help
you with package management. In addition to the pre-install and post-install
scripts mentioned earlier, there are also pre-remove and post-remove scripts.

Commercial Debian?

Debian remains an “almost-commercial” distribution. By this I mean that you
can buy it on a CD, but there is no company that sells and supports it, and as
far as I know, no commercial software packages are available in the Debian
format.

Sidebar: More Debian Information

This situation could change. As I write, InfoMagic is considering making Motif
available in Debian format. Also, as the official keeper of Matt Welsh's Linux
Installation and Getting Started, we are considering writing an installation
chapter for Debian.

Only time will tell if the Debian format will make serious inroads into the
commercial Linux market. I hope it does.

Phil Hughes is the publisher of Linux Journal and Jonathan Gross is a technical
editor at Seattle Software Labs.

Phil Hughes is the publisher of Linux Journal

https://secure2.linuxjournal.com/ljarchive/LJ/031/0172s1.html

Jonathan Gross is a technical editor at Seattle Software Labs.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

MkLinux—Linux Comes to the Power Macintosh

Richard C.S. Kinne

Issue #31, November 1996

Macintosh users can now come in from the cold—MkLinux has arrived. Here's
how it happened, and how you can get it.

May 17, 1996 was a day of celebration among people who are both Macintosh
and Linux devotees, for it is the day Apple and the Open Software Foundation
let loose the first Developer's Release of the anxiously awaited MkLinux.
MkLinux is a PowerPC-native version of Linux that operates on top of a MACH
kernel. Back in February, Apple and the Open Software Foundation announced
they would work together to port Linux to the PowerMacintosh platform. Since
then, the progress of the teams working in Grenoble, France and in Cupertino,
California has been anxiously followed.

Keeping up with the project was made easier with the creation of mailing lists
and a web site run by Nick Stephen, one of the project's programmers laboring
in Grenoble. While obviously very busy, Nick kept an impatient community at
bay with progress reports and patient answers to both simple and complex
questions.

While being harassed on an almost weekly basis to “release the code so we can
begin hacking on it”, the OSF and Apple teams were adamant that nothing
would be released until it was at least marginally stable—the growing MkLinux
community would have to wait.

On May 17, that wait ended as MkLinux DR1 was released, both on CD-ROM to
the attendees at Apple's World Wide Developer's Conference and to the world
at large via the Internet. Proving they were on top of what was to become a
small whirlwind of discussions and reports, Apple switched the old OSF mailing
list to one of their servers and created a bevy of additional mailing lists devoted
to specific topics. Apple also hosted the project's main web site, http://
www.mklinux.apple.com (Figure 1), and one of several FTP sites where the
MkLinux DR1 release could be downloaded onto waiting hard drives. For a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/031/0141f1.html

developmental release, it was a professional roll-out. Now the question on
everyone's mind—“Was the wait worth it?”—could be answered.

Figure 1. MkLinux World Wide Web Site

The Price of Admission

The admission price, in terms of computing resources needed for the first
MkLinux Developmental Release, is somewhat steep. This is not a Linux you are
going to be able to cram into 2MB of RAM and a 40MB hard drive. Apple
recommends that those brave persons who try installing DR1 have at least
16MB of RAM and 400MB free on their hard drives. Also, according to Apple, an
entire hard drive should be devoted to your MkLinux partitions, if possible.
Your choice of platforms is also somewhat limited. At this time, MkLinux runs
only on NuBus PowerMacintoshes using the PPC 601 RISC chip. The 603 or 604
chips are not supported, nor is the PCI bus. That situation will soon change.

The packages that have to be procured for the installation are also huge. Apple
originally put them on the Internet at ftp://mklinux.apple.com/pub/
MkLinux_DR1 for transfer and within a week, other sites had them available for
download. Packaged as stuffed MacOS SIT files, the initial MkLinux distribution
file, MkLinux_DR1.sit, is 42MB in size. Uncompressed, this expands to over
120MB! Additional packages, all several megabytes in size, are also available for
the MACH source code, the Red Hat Package Management (rpm) source
packages, the rpm binaries, and the X11 distribution. All in all, while you only
need the 42MB MkLinux_DR1.sit file to get started, the full distribution weighs
in at nearly 200MB of material.

Realizing that this could prove to be a severe problem to many of the people
who want this initial distribution, Apple made a deal with Prime Time Freeware
(http://www.ptf.com) to release to the general public the same CD-ROM given
out to the attendees of Apple's World Wide Developer's Conference. By sending
$10 plus shipping and handling to Prime Time Freeware, you'd be saved the
time and aggravation of having to download several megabytes from an
increasingly fickle Internet. Given the weight of the distribution, many people
opted for the CD-ROM in getting this first version of MkLinux.

Of Partitions and Installations

Once you have the required packages, either after downloading them from the
Internet or getting them off the CD-ROM, what happens? The first job is to
format and partition your drive. The Apple/OSF team wrote MkLinux to use the
same type of partitions as Apple's A/UX product in order to make it
(theoretically) easy to partition your drives, since most Mac partitioning
software supports creating A/UX partitions. As with any developmental release,

https://secure2.linuxjournal.com/ljarchive/LJ/031/0141f1.html

for some of us this worked, and for some of us it didn't. As an example of the
support the community gave not only itself but the MkLinux team, Philip
Machanick of the University of the Witwatersrand in South Africa kept track of
those types of hard drives and partitioning programs people reported were
working and not working with the DR1 release. By the time you read this, the
need for keeping such a list should be long past. Apple recommends that you
partition at least a 300MB root partition. This can be divided into a 100MB root
partition and a 200MB /usr partition, if you want to. You must also have a swap
partition that is at least 32MB in size, but not larger than 64MB. Because of how
Uhix type “upgrades” are done, it is best to separate the root and /usr
partitions.

Once the drive partitioning is completed—a job that Apple's release notes call
the most difficult process of the installation—you run the “Install MkLinux”
application to begin the actual file copying process. When this Macintosh
application runs, it asks several questions. Most importantly, the installer needs
to know the SCSI drive number of the hard drive with the MkLinux partitions.
Once that is secured, it goes on to find each of the partitions you've created
and asks if you wish to use them. The application is so careful in making sure
you want to do what you say that some users felt they were put through an
electronic version of the Inquisition during installation. However, once all the
questions are answered to the satisfaction of the installer, it copies the needed
files to the newly created MkLinux partitions. It also modifies the Macintosh
System Folder by adding one Control Panel and two System Extensions.
Together, these files act as the Macintosh version of LILO, enabling you to
specify which OS will boot up on system startup. The entire installation, once
started, takes about fifteen minutes to complete.

Once the files are copied, you need to invoke the new MkLinux Control Panel to
tell the Macintosh which OS you'd like to use for booting. At present, the
options for the Mac LILO program are rather limited. When you bring the
Control Panel up, you have a choice of selecting one of two radio buttons:
MacOS or MkLinux (Figure 2). Once you make this selection, there is a button
available to enable rebooting right then and there.

Figure 2. MkLinux Control Panel

Depending on which radio button you choose in the MkLinux Control Panel, a
couple of different things can happen. If you choose to reboot MacOS, you
won't even know MkLinux is available to you (save for the space its partitions
consume on your hard drive). If, however, you're brave and elect to boot
MkLinux, very early in the Macintosh boot process, the MkLinux LILO screen
appears on the screen. This colorful and well-constructed dialog box (Figure 3)
gives you the choice of booting MkLinux or booting MacOS. The countdown in

https://secure2.linuxjournal.com/ljarchive/LJ/031/0141f2.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0141f3.html

the lower right-hand corner of the dialog box gives you ten seconds to make up
your mind before, by default, the machine boots MkLinux.

Figure 3. MkLinux Dialog Box

Assuming you boot MkLinux, your screen turns black, and the white-lettered
lines of a Linux system booting up scroll up your screen. After a short pause,
the screen will again clear and print:

MkLinux for Power Macintosh. Brought to you by Apple Computer, Inc.
Kernel 1.2.13 on a osfmach3_ppc
login:

Congratulations! You're now running native Linux on a PowerMacintosh!

Your Mileage May Vary

Despite being distributed by Prime Time Freeware, MkLinux is not yet ready for
prime time. As already noted, many people have had problems right from the
start, being unable to even boot from their drives. Sources at Apple say this
problem will be solved by the time you read this article, but if you're
considering purchasing a new drive, you will want to check whether the one
you're considering has been used successfully by someone else before
spending money on it.

Video support in the first Developer's Release is a bit sparse. Only on-board
video and the HPV card are supported, and this has caused some problems
with people who have “AV” Macintosh systems.

Floppy drives and, more unfortunately, serial output, are not supported with
this first release. Thus, while you can play around with networking if you have
access to Ethernet, those of us who connect to the Internet via PPP will have to
wait a bit. The lack of serial support also limits printing options.

On the SCSI bus, only hard drives and CD-ROMs are supported at the moment.
The release notes say other devices, such as the Iomega ZIP drive, have not
been tested, but I have not gotten mine to work, and I know of no one on the
Internet who has.

Finally, as with any developer's release, your mileage may vary with respect to
getting various programs and systems working. For example, while I have not
gotten Emacs to work, I know of several people who've had no problem with it.
On the other hand, Apple's own Errata, as of May 25, mentions a problem
regarding a shell script that will cause you to be logged out the first time you
log on as root; I have never encountered this problem.

https://secure2.linuxjournal.com/ljarchive/LJ/031/0141f3.html

However, the MkLinux teams at Apple and OSF got a lot of things right. The
installation procedure (assuming you have a MkLinux-friendly drive) is one of
the smoothest installations I've ever been through for a software package of
this size. Considering this is a developer's release, it has been remarkably
stable. While there have been some surprises, usually either some work-around
has been developed or the situation is put right on the “to-do” list by the Apple/
OSF teams.

MkLinux's Future Shines Bright

According to Michael Burg at Apple, MkLinux will go through at least one more
developer's release, scheduled near the end of the summer, before the
Reference Release is distributed in September. The MkLinux world has proven
that it moves as quickly as the Intel Linux world, with updates and patches
appearing on Apple's FTP site ftp://ftp.mklinux.apple.com/pub/) on a weekly
basis. According to a schedule that Michael Burg released to the Internet in
early June, most of the bugs and omissions from DR1—such as video console
and driver issues, SCSI driver bugs, and the lack of serial support—should be
solved and implemented by the time you read this article. PCI bus support is
scheduled for the Reference Release with support for the PPC 603e platforms
coming some time in autumn.

Sidebar: Prime Time Freeware

MkLinux Discussion Lists from MKLinux FAQ

After autumn, what's next? To a large extent, like any Linux, that depends on
us. Apple and the OSF have released the full source code for this project to
anyone who wants it, respecting the spirit that has guided Linux since Linus
Torvalds first released it. Some Intel Linux hackers have wondered whether
there is enough of a critical mass of MkLinux programmers to keep the project
alive. Based on the beginnings of the community that has come alive around
this first developer's release, I don't think we'll disappoint our Intel brethren.

Sidebar: As We Go To Press

The Macintosh is a computer which, through its eleven years of life, has
inspired a lot of love and dedication. With MkLinux, we have the opportunity, as
the saying goes, to “fall in love all over again.”

Richard Kinne (kinnerc@snymorva.cs.snymor.edu) is using the MkLinux project
to re-acquaint himself with the Unix operating system after having been exiled
to VAX/VMS-land for ten years. He works as the User Services Consultant for
the State University of New York at Morrisville. When not writing or hacking

https://secure2.linuxjournal.com/ljarchive/LJ/031/0141s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0141s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/0141s3.html
mailto:kinnerc@snymorva.cs.snymor.edu

with his significant other, he enjoys Star Trek, Babylon 5 and playing with his
cats.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Inside Linux: A Look at Operating System Development

Richelo Killian

Issue #31, November 1996

I was expecting a book that really digs right into the Linux kernel, and would
give me some insight into why Linux works as great as it does, but that's not
what I found.

Author: Randolph Bentson

Publisher: Specialized Systems Consultants (SSC)

ISBN: 0-916151-89-1

Price: $22.00

Reviewer: Richelo Killian

The title of this book, Inside Linux: A Look at Operating System Development, is
a bit misleading. I was expecting a book that really digs right into the Linux
kernel, and would give me some insight into why Linux works as great as it
does, but that's not what I found.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Please don't misinterpret the above paragraph—Dr. Randolph Bentson has
written an excellent book here. I just think the title is a bit misleading. Now that
I have that off my chest, let's have a look at what the book does offer. The book
is divided into three parts:

• Computing Today
• The Linux Programmer's View
• The Advanced User's View

Chapter 1 discusses why Linux is becoming more popular, pointing out both its
advantages and its shortcomings, although even those are looked at from a
Linux-fanatic's point of view. This chapter alone makes buying the book
worthwhile, if only as ammunition to convince your boss you need Linux in your
organization.

In the next three chapters, Dr Bentson gives a fairly detailed history of the
development of Linux, covering, among other topics: security rings, the shell,
file system, timesharing, virtual memory, the X client, the X server, scheduling,
synchronization, memory management and kernel security. These issues are
discussed from the initial development of Linux, and why many of these
elements are implemented differently in Linux than in any other system. Each
system element is covered in sufficient detail, but not so much as to become
boring. Dr. Bentson has done an excellent job of filtering through all the
material available for these different areas of operating system Development,
but just in case there are some people out there who want more information
on one or more of the topics discussed, he includes more than enough pointers
to sites on the Internet to satisfy even the most avid reader.

Part II, “The Linux Programmer's View”, gets a bit deeper into the actual kernel.
Chapter 5 discusses the operating system kernel, concentrating on issues such
as: user interface, process control, input/output, memory management,
security, standards and “bootstrapping the kernel”. Each section is full of
example code which better explains the concepts presented. All of this
explanation is done in a mere 80 pages—I would have liked a more in-depth
discussion of the inner workings of the kernel.

Chapter 6 looks at the networking side of the kernel and gives a brief overview
of the ISO OSI Model, TCP/IP, UDP/IP and IP & ICMP. This chapter is very
informative, mostly covering information that can also be found in The Linux
Network Administrator's Guide. Part III starts off by looking at development
tools, but does not discuss any specific tools, concentrating instead on the
philosophies behind the tools.

Chapter 7 discusses languages, editors and file management tools. Chapter 8
goes into quite a bit of detail on the hardware supported by the Linux kernel.
These chapters would be very useful to a new user in making decisions as to
hardware and software tools. The book concludes with a quick run-down of
available distributions—a good reference for someone looking to buy, as long
as the rapid rate of change in software today is kept in mind. Covered in this
last chapter are dual tracked kernel releases, distribution kits and CD-ROM
publishers. Appendix B contains a concise list of system calls, and Appendix C
consists of a nice time-line of Linux development to date. Overall I would say
that this is an excellent read for the accomplished Unix User. Part II, however,
could be a bit too advanced for the newcomer to Unix.

Dr. Bentson emphasizes that the book was written in LaTeX, and converted to
HTML with LaTeX2HTML. It would be nice if SSC could include the book on CD in
HTML format to make following the URLs easier.

Richelo Killian (ftcs@icon.co.za) is the Unix system administrator at the
University of Cape Town, Electrical Engineering Department, South Africa. He
looks after and administers Sun, IBM, HP and Linux machines. He started in
Linux with the first Yggdrasil release. He is also the coordinator of the Linux
Promotion Project, hosted by Linux International.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:ftcs@icon.co.za
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

etags

Dave Thomas

Issue #31, November 1996

Have you gotten used to hypertext? Want the same mobility in your source
code and other documentation? etags may be your answer.

You've probably used hypertext links to browse the Web, skipping easily
between pages with simple keystrokes or mouse clicks. With etags you can
browse your source programs and documentation just as easily. In this article
I'll describe tag files and the etags and ctags commands that generate them. I'll
also look at how less, Emacs and vi use tag files to make your editing easier and
more productive.

etags and Emacs

By default, etags takes a collection of source files and generates an index of the
definitions of all the global symbols of interest. For C and C++ programs, this
index includes global and member functions, classes, structures, enums,
typedefs and #defines. For (La)TeX documents, it indexes chapters, sections,
subsections, figures, equations etc. etags also includes built-in support for
assembler, Fortran, lex, Lisp, Pascal, Sheme and yac. etags --help will give a
complete list of languages supported by your version.

Try running etags *.c *.h in one of your source directories. After it finishes
processing, you'll find that it has produced a file called TAGS. This is a simple
text file, with a block of entries for each file parsed. Each block contains a line
for each definition in the file, with the text of the definition and the line number
and absolute character position on which it was found.

How do you use this? Well, the simplest way is from within Emacs. You start
editing as normal in the source directory. When you come across a call to one
of your functions, and want to see how it was defined, position the cursor on
the call, and enter the Emacs command M-. (press the esc key followed by a
period, or hold alt and period down at the same time). Emacs will display the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

name of the function in the mini-buffer. If you press return to confirm, Emacs
will automatically open the file containing the definition and position the cursor
at its start. Suppose while looking through that function, you are puzzled by a
declaration which uses a typedef name. Move the cursor to it, press M-H. again,
and up pops the typedef. If you can't find the a #define you created, use M-.,
then type the macro name in the minibuffer. Emacs looks it up in the tags table
and takes you straight to it.

Sometimes you'll have more than one tag containing the same text, and M-. will
take you to the wrong place. Simply keep pressing C-u M-., and Emacs will move
through all possible tag matches. If you're finger-tied like me, you may find M-0

M-. a simpler way to enter a prefix for the find-tag command. Entering a
negative prefix (C-u -M.) takes you back to a previous definition.

That's not all you can do with the TAGS file. Imagine that when you were typing
in some source you decided to give your functions long, descriptive names. It
seemed like a good idea at the time but now the glow is wearing off as you're
typing a call to that function for the nth time. Again, tags can help. Type the first
few characters of the name, then press M-tab. Either the full function name will
appear, or a window will pop up displaying a list of possible completions. (This
might not work for XEmacs users, and you may have to re-bind M-tab to tag-

complete-symbol.)

You can also use tag completion in the minibuffer whenever a command
prompts for a tag—type in the first few characters, press tab, and Emacs will do
the rest.

If you're an XEmacs user, the M-?i command displays a single line summary of a
function or typedef in the modeline—really useful if you've forgotten the calling
sequence!

Tags are also a great way to perform search and replace operations across all
your source files. The tags-search command prompts you for a regular
expression, then displays the first match in any of the files in your TAGS table.
You can move on to successive matches using M-, (that's meta-comma). The
tags-query-replace performs a egex-replace across all the files in the TAGS
table. You can stop it at any point (with escape or C-g) and later resume it with
M-,.

Finally, the tags-apropos lists in a separate window all tags matching the
regular expression that you enter—a great way to scan for stuff in a hurry.

ctags, vi and less

In the same way that etags works with Emacs, the ctags program generates tag
files that can be used with vi, view and less. The basic operation of the
command is the same, but it generates a file called tags (in lower case). Once
it's finished, you can go straight from the command line to a particular function
in either vi or less using vi -tname or less -tname. You don't even have to give a
file name!

If you're editing with vi, you can move to a tag using the :tag command.

Keeping up to Date

Surprisingly, the TAGS and tags index files remain valid even if you insert and
delete lines in the files they reference. You really need to run etags/ctags only
when you add or remove functions or files. I find it convenient to have a tags:

target in my Makefiles for this:

tags:
 etags $(SRC)

If you have files in many directories, you could generate a single tags file
covering them all by specifying directory names on the command line. This
works fine in vi and Emacs, but you'll need to set up either the tags-file-name

variable or tag-table-alist if you're an XEmacs user. I personally find this pretty
clumsy, and tend to stick to a TAGS file per directory.

More Information

man etags and man ctags are the obvious starting places. You'll also find good
information in the Emacs info pages, and using the Emacs ?H-a command.

ctags and etags are both included in Emacs and XEmacs distributions. You can
also get various other tags programs from the Internet—archie -c ctags will find
a site near you.

Dave Thomas (davet@gte.net) is an independent consultant specializing in
complex Unix, OS/2 and Windows developments. He's forever grateful for all
the work that's gone into Linux and XFree—it lets him work from home in
Dallas on client systems in Florida, New Hampshire, Atlanta, Toronto... The
phone company is happy too.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/031/0153.table.new.html
mailto:davet@gte.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

New Products

Margie Richardson

Issue #31, November 1996

Absoft Fortran 77 for Linux, Spyglass Client Web Technology Kit, and more.

Absoft Fortran 77 for Linux

Absoft Corporation now provides a commercial grade, native Fortran 77
compiler and debugger for Linux/Intel systems. The compiler includes Pentium
optimizations and strong support for mainframe/workstation extensions. It is
compatible with gcc and all system tools. Absoft offers educational and site
discounts. For pricing contact them at the address below.

Contact: Absoft Corp., 2781 Bond Street, Rochester Hills, MI 48309, Phone:
810-853-0050, Fax: 810-853-0108, E-mail: sales@absoft.com, URL: http://
www.absoft.com/.

Spyglass Client Web Technology Kit in Red Hat Linux

Red Hat Software, Inc. has announced that its Linux operating system will now
include the Spyglass Client Web Technology Kit (WTK) at no additional cost.
Spyglass WTK is the most comprehensive web technology offering available
today, covering multiple platforms and offering a complete, high-quality set of
premium web technologies that developers can “mix and match” to web-enable
applications, services and devices.

Contact: Red Hat Software Inc., 3201 Yorktown Rd. Durham, NC 22713, Phone:
203-454-5500, Fax: 203-454-2582, E-mail: info@redhat.com, URL: http://
www.redhat.com/.

BLAST Communications Software for Linux

BLAST, Inc., a provider of cross-platform asynchronous communications
software, announced the release of BLAST for Linux (Intel-based), version 10.7.
BLAST includes the following file transfer protocols: Xmodem, Ymodem,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sales@absoft.com
mailto:info@redhat.com

Zmodem, Kermit and BLAST's own proprietary file transfer protocol. It also
supports TTY and Passthru terminal emulations. BLAST for Linux runs on Linux
version 1.2.12-ELF and is priced at $495.

Contact: BLAST Inc., P.O. Box 808, Pittsboro, North Carolina 27312, Phone:
800-242-5278, Fax: 919-542-0161, E-mail: sales@blast.com, URL: http://
www.blast.com/.

TenXpert CD Server Upgrade

Ten X Technology, Inc. announced an upgrade to its TenXpert CD server that
increases both performance and capability without raising the price. The
TenXpert-1, entry-level server with a 1GB hard disk cache, now supports 42
CDs, up from 14. The midrange server, TenXpert-4 expands its hard disk cache
from 1 to 2 GB, increases CD support from 42 to 168 discs, and adds support
for writing CDs over the network to a CD-Recordable drive. The top end server,
TenXpert-8 increases its hard disk cache from 2 to 4 GB, handles 250 CDs and
supports NSM jukeboxes with its internal CD-Recordable drive. TenXpert
servers have a list price beginning at $2995.

Contact: Ten X Technology, Inc., 13091 Pond Springs Road, Austin, Texas, 79729,
Phone: 800-922-9050, Fax: 512-918-9495, E-mail: greg@tenx.com, URL: http://
www.tenx.com/.

TransactNet Web Interface Toolkit

TransactNet, Inc. announced the availability of their Web Interface Toolkit (WIT),
the first Java tool to automate the web. WIT was developed using a Linux
system, and contains a set of Java class libraries, code generators and an
intuitive user interface, allowing it to generate Java applets, stand-alone
applications or “servlets”. The WIT class libraries, encapsulating HTML parsing, a
Javascript compatible HTML document object model, and HTTP and CGI access
can also be used directly by the developer. A free beta version of WIT 1.0 is
available now and can be downloaded from http://www.transactnet.com/.
Pricing for the production release scheduled in late September has not been
announced.

Contact: TransactNet, Inc., 4094 Majestic Lane, Suite 226, Fairfax, VA 22033,
Phone: 703-426-0386, Fax: 703-426-0387, E-mail: info@transactnet.com, URL:
http://www.transactnet.com/.

32 bit ODBC Driver for c-tree Plus

The FairCom Corporation announced the release of its 32 bit Open Database
Connectivity (ODBC) Driver Kit for c-tree Plus and the FairCom Servers. The

mailto:sales@blast.com
mailto:greg@tenx.com
mailto:info@transactnet.com

ODBC Driver v1.6A is a single-tier driver that interfaces directly with the c-tree
Plus programming interface. This new release operates with the Linux X-
Windows compatibility software and offers full read and write capabilities,
support for multiple communication protocols and additional data alignment
options. The ODBC Driver is a dynamic link library which supports both multi-
user non-server and client/server modes of operation, and can be purchased
for $59.00 per node.

Contact: FairCom Corporation, 4006 W. Broadway, Columbia, MO 65203,
Phone: 573-445-6833, Fax: 573-445-9698, E-mail: faircom@faircom.com, URL:
http://www.faircom.com/.

Phonetics Data Remote

Phonetics, Inc. announced the addition of Data Remote to its family of
intelligent communication devices. Data Remote produces and communicates
reports from remote equipment, and can be attached to any device with an
RS232 output port to give instant reporting capability over standard phone
lines. Data Remote is priced under $1000.

Contact: Phonetics, Inc., 901 Tryens Road, Aston, PA 19014, Phone:
610-558-2700, Fax: 610-558-0222, E-mail: sales@phonetics-monitoring.com,
URL: http:/www.phonetics-monitoring.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:faircom@faircom.com
mailto:sales@phonetics-monitoring.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #31, November 1996

Our experts answer your technical questions.

Bootable Kernels and Slackware Installation

I have a new scsi controller (aha2940) which my only hard drive is connected to.
I can get the latest boot disk for my controller, but the kernel that gets installed
by Slackware is unbootable. How do I use the kernel on my boot disk as a
kernel for my hard drive? How can I boot from the floppy and compile a kernel
for my hard drive?

Manni Wood

A Work-around

During the Slackware installation procedure, a kernel is installed from the
distribution set instead of from the boot disk that you used to start your i
system. Handling the installation this way has the unfortunate side effect of
making certain hardware devices unrecognizable to your new system since only
two kernels are included in the distribution set—one for IDE and another for
SCSI-based systems. The installation is handled this way because the boot disk
kernels are “all-in-one” packages that have device drivers for every imaginable
piece of hardware. This is quite inefficient for normal use, since many of the
drivers are unused and these extra options will waste memory. After you install
Linux you should compile and install a new kernel image with only the options
you really need.

While you are setting up your system, you can use a temporary work-around
that will let you use the boot disk's kernel to boot your system. Slackware boot
disks prompt you for a set of options to pass to the booted kernel. One of the
options will allow you to boot a system that has no working kernel image
installed. At the prompt, type mount root=/dev/X , where X specifies the drive
and partition where you installed Linux, e.g. sda, hdb2. This boot disk can be

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

quite handy to have in case you forget to re-run LILO after installing a new
kernel, because your system will be unbootable without it. When it is used in
conjunction with a root diskette that also contains some diagnosis and recovery
tools, you will have a powerful pair of emergency utility disks.

Once Linux is running you need to copy a working boot kernel to wherever LILO
(assuming you installed LILO) is looking for your current image. As a general
practice you'll want to keep a backup copy installed as well. You can control
LILO by editing /etc/lilo.conf. The default file should be fairly well commented
and you can consult the LILO documentation for more details. If you don't have
the original file you can copy the boot diskette onto your drive as a kernel
image with the command:

dd if=/dev/fd0 of=/tmp/myimage bs=8192

replacing if and of with the appropriate input and output locations. After the
new kernel file is in place, rerun LILO by typing lilo so it can rebuild its boot
tables. If you forget to take this step you will not be able to boot your system!
To recompile and install a new kernel, obtain a kernel and extract the archive
into /usr/src/linux. Users with Slackware distributions set up for kernel version
1.2 need to beware. Many things have changed as Linux has grown to version
2.0, so many things can break. You may wish to make this step later. Slackware
3.0 comes with the complete set of the newest version 1.2 kernel package, in
the K disk set. Either install that or unpack your desired package into /usr/src/

linux.

The easiest and safest (though not the nicest looking) way to rebuild the kernel
is to then cd into /usr/src/linux, type make config, and answer all the questions.
Then type make dep; make clean; make zImage. If you are running on an Intel
platform your new kernel image will be produced in /usr/src/linux/arch/i386/

boot/zImage . Be prepared to wait, especially if you have a slow machine. If you
are using a newer kernel package, you might type make menuconfig or one of
the other combinations (see Makefile for details) for a better-looking
configuration process.

—Chad RobinsonBRT Technical Services Corporation chadr@brttech.com

Drivers for 8 or 16 Port Serial Cards

Do you know where I could find a driver for a Jaws (extinct?) JCom-8 eight port
serial card? What other 8 or 16 port cards would allow me to operate 8 Wyse
150 terms from Linux? —Gary Richardson

mailto:chadr@brttech.com

Here's One Source

That's not a card I've ever even heard of. To answer the second part of the
question, there are several cards out there that can do what you need. The
kernel has direct support for all of the Cyclades boards. We use a 16 port PCI
Cyclades at Red Hat and it worked right out of the box (though it requires a
kernel recompile or a module to be built).

—Donnie Barnes, Red Hat Software djb@redhat.com

Formatting Back-up Tapes

Is there any program/utility that will format, read the contents of and selectively
back up or restore information on tapes?

—Dave Blondell

A Utility for Backing up and Restoring

There's a powerful utility called

Taper

that's able to selectively back up and restore information on tapes, with or
without verifying. It's very easy to use as you can just tag the files or directories
from menus. [See “Tar and Taper for Linux”, by Yusuf Nagree, in LJ #22—Ed]
Unfortunately, it cannot format tapes, so they must be bought preformatted (or
formatted under DOS). I'm not aware of any utility that lets you format tapes
under Linux.

—Flavio Villanustre flavio@newage.com.ar

XF86Cig File under X-Windows

I am now trying to set up X-Windows, but I have no idea how the sections for
“Device” and “Screen” of XF86Config file should be described. If you have any
concrete example for my card, will you kindly let me know? My video card is:
Canopus Power Window 968PCI-4M (S3)

—Hiroshi Shibata

Try This Instead

Rather than hacking the XF86Config by hand, have you tried using xf86config?
(It should be in /usr/X11/bin.) The copy of xf86config that I have here (from
3.1.2D) lists an S3-968 (generic) option and that should work for you. The

mailto:djb@redhat.com
mailto:flavio@newage.com.ar

xf86config that comes with the latest XFree86 might even list your card
specifically. If it doesn't work, you might want to try using some of the options
at http://www.xfree86.org/3.1.2/S3-1.html for other cards using the same
chipset.

—Steven Pritchard,President, Southern Illinois Linux Users Group

Setting up Usenet News

How do I set up Usenet news (with CNews or INN)? What documentation/books
are available?

—Koen Rousseau kobalt@innet.be

First, Obtain a News Feed ...

First, if you want to carry the “real” Usenet, you must obtain a news feed from
somewhere. Your ISP should be able to point you in the right direction, or sell
you one themselves. Note that you don't necessarily need a news feed to use
INN or CNews. If you only want to support some some local news groups,
within a company intranet for example, then you don't need an outside feed.
Looked at in that light, a Linux PC and INN can provide one of the most-touted
features of a product like Lotus Notes (group conferencing and company-wide
discussion forums) at a fraction of the cost. Once you've made arrangements
for a feed, then you need to install the software. I recommend INN for new
sites. You have a Red Hat distribution, and Red Hat has an RPM (Red Hat
Packaging System) for INN on their ftp site under ftp://ftp.redhat.com/pub/
contrib/RPMS/inn-1.4unoff4-2.i386.rpm. Download, then install with:

rpm -i inn-1.4unoff4-2.i386.rpm

It works right “out of the box”. You will, of course, have to configure it for your
site—add your feed site to /etc/news/newsfeeds, nntpsend.ctl and hosts.nntp.
Verify that the groups you want to carry are in /var/lib/news/active and
newsgroups, and then configure nnrp.access to allow reading/posting from the
proper IP addresses.

After that is all working add /usr/lib/news/bin/news.daily and nntpsend to /etc/

crontab. News.daily and nntpsend should be run as user “news”, not as root.
These programs expire old news and transmit your site's outgoing posts,
respectively.

The RPM installs a FAQ under /usr/doc that should answer most of your
questions.

mailto:kobalt@innet.be

—Bob Hauck, Wasatch Communications Group bobh@wasatch.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:bobh@wasatch.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Consultants Directory

This is a collection of all the consultant listings
printed in LJ 1996. For listings which changed
during that period, we used the version most
recently printed. The contact information is left as
it was printed, and may be out of date.

ACAY Network Computing Pty Ltd
Australian-based consulting firm specializing in: Turnkey Internet
solutions, firewall configuration and administration, Internet connectivity,
installation and support for CISCO routers and Linux.

Address:
Suite 4/77 Albert Avenue, Chatswood, NSW, 2067, Australia
+61-2-411-7340, FAX: +61-2-411-7325
sales@acay.com.au
http://www.acay.com.au

Aegis Information Systems, Inc.
Specializing in: System Integration, Installation, Administration,
Programming, and Networking on multiple Operating System platforms.

Address:
PO Box 730, Hicksville, New York 11802-0730
800-AEGIS-00, FAX: 800-AIS-1216
info@aegisinfosys.com
http://www.aegisinfosys.com/

American Group Workflow Automation
Certified Microsoft Professional, LanServer, Netware and UnixWare
Engineer on staff. Caldera Business Partner, firewalls, pre-configured
systems, world-wide travel and/or consulting. MS-Windows with Linux.

Address:
West Coast: PO Box 77551, Seattle, WA 98177-0551
206-363-0459
East Coast: 3422 Old Capitol Trail, Suite 1068, Wilmington, DE
19808-6192
302-996-3204
amergrp@amer-grp.com
http://www.amer-grp.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sales@acay.com.au
http://www.acay.com.au
mailto:info@aegisinfosys.com
http://www.aegisinfosys.com/
mailto:amergrp@amer-grp.com
http://www.amer-grp.com

Bitbybit Information Systems
Development, consulting, installation, scheduling systems, database
interoperability.

Address:
Radex Complex, Kluyverweg 2A, 2629 HT Delft, The Netherlands
+31-(0)-15-2682569, FAX: +31-(0)-15-2682530
info@bitbybit-is.nl

Celestial Systems Design
General Unix consulting, Internet connectivity, Linux, and Caldera
Network Desktop sales, installation and support.

Address:
60 Pine Ave W #407, Montréal, Quebec, Canada H2W 1R2
514-282-1218, FAX 514-282-1218
cdsi@consultan.com

CIBER*NET
General Unix/Linux consulting, network connectivity, support, porting and
web development.

Address:
Derqui 47, 5501 Godoy Cruz, Mendoza, Argentina
22-2492
afernand@planet.losandes.com.ar

Cosmos Engineering
Linux consulting, installation and system administration. Internet
connectivity and WWW programming. Netware and Windows NT
integration.

Address:
213-930-2540, FAX: 213-930-1393
76244.2406@compuserv.com

Ian T. Zimmerman
Linux consulting.

Address:
PO Box 13445, Berkeley, CA 94712
510-528-0800-x19
itz@rahul.net

InfoMagic, Inc.
Technical Support; Installation & Setup; Network Configuration; Remote
System Administration; Internet Connectivity.

Address:
PO Box 30370, Flagstaff, AZ 86003-0370

mailto:info@bitbybit-is.nl
mailto:cdsi@consultan.com
mailto:afernand@planet.losandes.com.ar
mailto:76244.2406@compuserv.com
mailto:itz@rahul.net

602-526-9852, FAX: 602-526-9573
support@infomagic.com

Insync Design
Software engineering in C/C++, project management, scientific
programming, virtual teamwork.

Address:
10131 S East Torch Lake Dr, Alden MI 49612
616-331-6688, FAX: 616-331-6608
insync@ix.netcom.com

Internet Systems and Services, Inc.
Linux/Unix large system integration & design, TCP/IP network
management, global routing & Internet information services.

Address:
Washington, DC-NY area,
703-222-4243
bass@silkroad.com
http://www.silkroad.com/

Kimbrell Consulting
Product/Project Manager specializing in Unix/Linux/SunOS/Solaris/AIX/
HPUX installation, management, porting/software development including:
graphics adaptor device drivers, web server configuration, web page
development.

Address:
321 Regatta Ct, Austin, TX 78734
kimbrell@bga.com

Linux Consulting / Lu & Lu
Linux installation, administration, programming, and networking with IBM
RS/6000, HP-UX, SunOS, and Linux.

Address:
Houston, TX and Baltimore, MD
713-466-3696, FAX: 713-466-3654
fanlu@informix.com
plu@condor.cs.jhu.edu

Linux Consulting / Scott Barker
Linux installation, system administration, network administration,
internet connectivity and technical support.

Address:
Calgary, AB, Canada
403-285-0696, 403-285-1399
sbarker@galileo.cuug.ab.ca

mailto:support@infomagic.com
mailto:insync@ix.netcom.com
mailto:bass@silkroad.com
http://www.silkroad.com/
mailto:kimbrell@bga.com
mailto:fanlu@informix.com
mailto:plu@condor.cs.jhu.edu
mailto:sbarker@galileo.cuug.ab.ca

LOD Communications, Inc
Linux, SunOS, Solaris technical support/troubleshooting. System
installation, configuration. Internet consulting: installation, configuration
for networking hardware/software. WWW server, virtual domain
configuration. Unix Security consulting.

Address:
1095 Ocala Road, Tallahassee, FL 32304
800-446-7420
support@lod.com
http://www.lod.com/

Media Consultores
Linux Intranet and Internet solutions, including Web page design and
database integration.

Address:
Rua Jose Regio 176-Mindelo, 4480 Cila do Conde, Portugal
351-52-671-591, FAX: 351-52-672-431
http://www.clubenet.com/media/index.html/

Perlin & Associates
General Unix consulting, Internet connectivity, Linux installation, support,
porting.

Address:
1902 N 44th St, Seattle, WA 98103
206-634-0186
davep@nanosoft.com

R.J. Matter & Associates
Barcode printing solutions for Linux/UNIX. Royalty-free C source code and
binaries for Epson and HP Series II compatible printers.

Address:
PO Box 9042, Highland, IN 46322-9042
219-845-5247
71021.2654@compuserve.com

RTX Services/William Wallace
Tcl/Tk GUI development, real-time, C/C++ software development.

Address:
101 Longmeadow Dr, Coppell, TX 75109
214-462-7237
rtxserv@metronet.com
http://www.metronet.com/~rtserv/

Spano Net Solutions
Network solutions including configuration, WWW, security, remote

mailto:support@lod.com
http://www.lod.com/
http://www.clubenet.com/media/index.html/
mailto:davep@nanosoft.com
mailto:71021.2654@compuserve.com
mailto:rtxserv@metronet.com
http://www.metronet.com/~rtserv/

system administration, upkeep, planning and general Unix consulting.
Reasonable rates, high quality customer service. Free estimates.

Address:
846 E Walnut #268, Grapevine, TX 76051
817-421-4649
jeff@dfw.net

Systems Enhancements Consulting
Free technical support on most Operating Systems; Linux installation;
system administration, network administration, remote system
administration, internet connectivity, web server configuration and
integration solutions.

Address:
PO Box 298, 3128 Walton Blvd, Rochester Hills, MI 48309
810-373-7518, FAX: 818-617-9818
mlhendri@oakland.edu

tummy.com, ltd.
Linux consulting and software development.

Address:
Suite 807, 300 South 16th Street, Omaha NE 68102
402-344-4426, FAX: 402-341-7119
xvscan@tummy.com
http://www.tummy.com/

VirtuMall, Inc.
Full-service interactive and WWW Programming, Consulting, and
Development firm. Develops high-end CGI Scripting, Graphic Design, and
Interactive features for WWW sites of all needs.

Address:
930 Massachusetts Ave, Cambridge, MA 02139
800-862-5596, 617-497-8006, FAX: 617-492-0486
comments@virtumall.com

William F. Rousseau
Unix/Linux and TCP/IP network consulting, C/C++ programming, web
pages, and CGI scripts.

Address:
San Francisco Bay Area
510-455-8008, FAX: 510-455-8008
rousseau@aimnet.com

Zei Software
Experienced senior project managers. Linux/Unix/Critical business
software development; C, C++, Motif, Sybase, Internet connectivity.

mailto:jeff@dfw.net
mailto:mlhendri@oakland.edu
mailto:xvscan@tummy.com
http://www.tummy.com/
mailto:comments@virtumall.com
mailto:rousseau@aimnet.com

Address:
2713 Route 23, Newfoundland, NJ 07435
201-208-8800, FAX: 201-208-1888
art@zei.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:art@zei.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/031/toc031.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News and Articles
	Columns
	Directories & References
	Linux Goes 3D: An Introduction to Mesa/OpenGL
	Jörg-Rüdiger Hill

	Qt GUI Toolkit
	Eirik Eng
	The Qt Story
	Signals and Slots
	The Qt Paint Engine.
	Support Classes
	Qt Event Handling
	Double-buffering
	Making Your Own Software Components
	Dialog Boxes
	Hints and Tips
	Where to Find Qt

	Graphics Tools for Linux
	Michael J. Hammel
	In the Beginning...
	Graphics Basics
	Viewing Tools
	Creation Tools
	Manipulation Tools
	Animation Tools
	Conversion Tools
	Programming Interfaces
	Web Pages
	The Future

	OpenGL Programming on Linux
	Vincent S. Cojot
	Introduction
	What is OpenGL?
	Back to a Dearly Loved Linux Box
	To Port or Not to Port, That Was No
Question
	Performance: Hardware and Software
	Conclusion
	Future Directions

	The Java Developer's Kit
	Arman Danesh
	Obtaining the JDK
	Installing the JDK
	Using the JDK
	Troubleshooting Your Installation
	Getting More Information

	LJ Interviews Larry Gritz
	Amy Wood

	Linux-GGI Project
	Andreas Beck
	Steffen Seeger
	Introduction
	Video Hardware Driver
	Input Hardware Driver
	A New Way of Understanding Consoles

	Java and Postgres95
	Bill Binko
	An Introduction to Java
	Interfacing Java with Existing Systems
	The Battle Plan
	Using Native Methods in Java
	An Example: The PGConnection Class
	The PGConnection Constructor
	Beware of a major pitfall here!
	Jumping through Some Hoops
	Hoop #1: Returning Java Objects
(exec() Explained)
	Hoop #2: Append to Strings in Java, not C
(getline() Explained)
	Hoop #3: You Can't Get a Stream's FILE*;
(trace() and formatTuples()
Explained)
	The Finish Line
	A Simple libJgres Example
	Conclusion

	Letters to the Editor
	Various
	Funny You Should Ask...
	X-cellent Resource
	More Coverage of Various Platforms
	Coming Up in
LJ...
	Korn Shell Bin for Free

	Is This Any Way to Run a Railroad?
	Phil Hughes
	What's Changing?
	Linux Gazette
	Novice-to-Novice
	Tech Answers
	More product reviews
	More pages
	And more

	Keyboards, Consoles, and VT Cruising
	John M. Fisk
	The Keypad VT-Switcher
	Getting from Here to There
	The Useful Unused VT
	So Where Did X Go?
	Putting That Unused VT to Work

	Debian 1.1
	Phil Hughes
	Jonathan Gross
	Some Background...
	Installing Debian
	More on the Debian Packaging System
	Commercial Debian?

	MkLinux—Linux Comes to the Power Macintosh
	Richard C.S. Kinne
	The Price of Admission
	Of Partitions and Installations
	Your Mileage May Vary
	MkLinux's Future Shines Bright

	Inside Linux: A Look at Operating System Development
	Richelo Killian

	etags
	Dave Thomas
	etags and Emacs
	ctags, vi and less
	Keeping up to Date

	New Products
	Margie Richardson
	Absoft Fortran 77 for Linux
	Spyglass Client Web Technology Kit in Red Hat
Linux
	BLAST Communications Software for Linux
	TenXpert CD Server Upgrade
	TransactNet Web Interface Toolkit
	32 bit ODBC Driver for c-tree Plus
	Phonetics Data Remote

	Best of Technical Support
	Various
	Bootable Kernels and Slackware
Installation
	A Work-around
	Drivers for 8 or 16 Port Serial Cards
	Here's One Source
	Formatting Back-up Tapes
	A Utility for Backing up and Restoring
	Taper
	XF86Cig File under X-Windows
	Try This Instead
	Setting up Usenet News
	First, Obtain a News Feed ...

	Consultants Directory

